
�¨¸Ó³  ¢ �—
Ÿ º3[100]-2000 Particles and Nuclei, Letters No.3[100]-2000

“„Š 539.12.162.8

NiMax: A NEW APPROACH TO DEVELOP HADRONIC EVENT
GENERATORS IN HEP

N.Amelin, M.Komogorov

The NiMax framework is a new approach to develop, assemble and use hadronic
event generators in HEP. There are several important concepts of the NiMax architecture:
the component, the data ˇle, the application domain module, the control system and the
project. Here we describe these concepts stressing their functionality.

The investigation has been performed at the Laboratory of High Energies, JINR.

NiMax: �µ¢Ò° ¶µ¤Ìµ¤ ± ¸µ§¤ ´¨Õ £¥´¥· Éµ·µ¢ ¸µ¡ÒÉ¨° ¢§ -
¨³µ¤¥°¸É¢¨Ö Î ¸É¨Í ¨ Ö¤¥·

'.�³¥²¨´, Œ.Šµ³µ£µ·µ¢

I¡¸Ê¦¤ ¥É¸Ö ¶·µ£· ³³´µ¥ µ¡¥¸¶¥Î¥´¨¥ (NiMax Ë·¥°³¢µ·±) ¤²Ö · §· ¡µÉ±¨,
¸¡µ·±¨ ¨ ¶·¨³¥´¥´¨Ö  ¤·µ´´ÒÌ ³µ¤¥²¥° Å £¥´¥· Éµ·µ¢ ¢§ ¨³µ¤¥°¸É¢¨Ö Î ¸É¨Í ¨
Ö¤¥· ¢ Ë¨§¨±¥ ¢Ò¸µ±¨Ì Ô´¥·£¨°. ‚ ¤ ´´µ³ ¶µ¤Ìµ¤¥ É·¥¡Ê¥³ Ö ¸²µ¦´ Ö ³µ¤¥²Ó ³µ-
¦¥É ¡ÒÉÓ ¸µ¡· ´  ¨§ µÉ¤¥²Ó´ÒÌ ´¥§ ¢¨¸¨³ÒÌ ±µ³¶µ´¥´É ¶µ¸·¥¤¸É¢µ³ ¶µ²Ó§µ¢ É¥²Ó-
¸±µ£µ £· Ë¨Î¥¸±µ£µ ¨´É¥·Ë¥°¸ . I¸µ¡µ¥ ¢´¨³ ´¨¥ Ê¤¥²Ö¥É¸Ö µ¡¸Ê¦¤¥´¨Õ ´ ¨¡µ²¥¥
¢ ¦´ÒÌ ¸µ¸É ¢²ÖÕÐ¨Ì ¤ ´´µ£µ ¶µ¤Ìµ¤ : ±µ³¶µ´¥´ÉÒ, Ë °²  ¤ ´´ÒÌ, ¶·µ¥±É , ¶·µ-
£· ³³´µ° ¸·¥¤Ò, ¸¢Ö§ ´´µ° ¸  ¤·µ´´Ò³¨ ³µ¤¥²Ö³¨, ¨ Ê¶· ¢²ÖÕÐ¥° ¸¨¸É¥³Ò.

G ¡µÉ  ¢Ò¶µ²´¥´  ¢ ‹ ¡µ· Éµ·¨¨ ¢Ò¸µ±¨Ì Ô´¥·£¨° IˆŸˆ.

1. INTRODUCTION

The NiMax framework is a software tool to support a component approach for the
hadronic event generator development. This is also a tool to facilitate the work of the event
generator users. In our publication [1] we have argued the necessity and advantages to
develop such a tool. In that publication we have outlined the framework basic ideas. In [1]
we have described the ˇrst framework version, which was built as the prototype version, and
gave several examples of its application. Recently we have revised this version and made
a step forward to real framework adding important mechanism of the component interaction
by means of the data ˇle bus. We refer this mechanism as the component collaboration.
The model component collaboration allows us to join several model components into a model
project. So far we are able to join components into the pipeline projects, where the component
execution Low is the same as the pipeline data Low. Below we would like to outline the
main features of the NiMax component, the NiMax data ˇle, the NiMax application domain



36 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

module as well as the NiMax control system. Describing the NiMax framework we would
like to pay attention that most of the framework features are not connected with the speciˇc
properties of the hadronic event generators domain and our framework has much wider range
of its applicability.

2. NiMax COMPONENT

2.1. Component Interfaces. We can consider a component as a set of interfaces. By
means of an interface a client can talk with a component asking a deˇnite service. An interface
includes several methods or operations and some related data. Let us explain functionality of
the standardized NiMax component interfaces, which are presented in Figs. 1, 2, 3.

By means of the input interface a user sends a request for a component and provides
necessary input data to fulˇll this request. A request as well as input data is provided in the
form of the input map [1]. The input map is based on the lists of simple data types and has
linear structure.

Fig. 1. Main component interfaces

The tuning interface gives a possibility of tuning a
component with the aim to obtain reliable result from its
execution. For example, by means of this interface a user
handles hadronic model parameters. Our framework has a
set of classes to support parameter and input map manage-
ment [1].

The result of component execution is obtained by
means of the output interface. This interface writes the
component output data on the data ˇle.

The output data are stored as conˇgured data events
and have tree structure [1]. There is a special kind of the
data events. We refer them as the predeˇned events (see
below).

If component starts to run from the request obtained by the input interface we refer it
as the main component. Figure 1 shows its example. A component can also read its input from

Fig. 2. Component output interface

the data ˇle as it is shown in Fig. 3. It
starts to run from the request obtained by
the matching interface.

The matching interface is needed to of-
fer the component collaboration. According
to a matching conˇguration it selects output
data obtained from a component to be used
as starting input data for another component.
The idea of input data selection is illustrated
by Figs. 4Ä5.

The written data conˇguration has linear or tree structure (it will be explained below).
The component matching conˇgurations (matching maps) are realized similarly as the

component input maps [1].
A component can have several matching maps. Any of them can be registered as the

default one. A component user is allowed to edit them (under the framework control), to



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 37

Fig. 3. Component matching interface

Fig. 4. Matching the linear structured data

change the default map and to add its own matching maps. The matching conˇguration
represents the conˇguration of the basic data types. The matching conˇgurations can have
either linear data structure or tree data structure.

Each component has its application programming interface (API), i.e., a set of public and
protected methods, which implement the component functionality and can be called directly
as in the case of component aggregation (see below) or indirectly by means of the component
interface methods.

2.2. Component Interface Views. Each component interface has at least one view
document as it is shown in Fig. 6.

Thus, a component user has the possibility of visualizing component input maps, com-
ponent matching maps, component parameters and its output conˇguration.

2.3. Common Component Elements. Besides standardized interfaces and views the
framework components have other common elements. Each component has its own component



38 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

Fig. 5. Matching the tree structured data

factory to create the component objects and includes the component static information, which
is needed for component object creation [1]. Any component has its unique identiˇer [1]. The

Fig. 6. Component interface views

knowledge of component's identiˇer helps us to ob-
tain full information about the component. Partic-
ularly, the composite component aggregating (see
below) other components should include their prox-
ies, which have the component identiˇers as proxy's
members.

2.4. Component Inheritance. Each component
supports the inheritance mechanism. It is illustrated
by Fig. 7.

Thus, we distinguish the base and the derived
components. The interfaces of base component and
derived component are joined as well as their public
APIs.

2.5. Component Aggregation. As shown in
Fig. 8 a component can include several aggregated
components. These components can belong to differ-
ent libraries. We refer the aggregating component as the parent component and the aggregated
components are considered as the child components. A child component can aggregate other
child components. Thus, it can be considered as the parent component relatively to its child
components. A component can include the tree of aggregated components.

The child's component tuning and output interfaces are simply joined to the respective
aggregating component interfaces.



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 39

2.6. Sub-Component Substitution. The inheritance mechanism offers a possibility for
component runtime substitution (see Fig. 9). A component can be substituted by another
component, if they have common base component (see also [1]). Thus, inside the composite
component an aggregated component can be substituted by an alternative component without
coding, i.e., using the user interface.

Fig. 7. Component inheritance Fig. 8. Component aggregation

2.7. Component Development. To help a component developer we created the component
wizard by customizing the Microsoft Visual C++ 6.0 application wizard [3]. The component
wizard is a code generator that produces a component skeleton with class names, source code
ˇle names, etc., which are speciˇed through the dialog windows. For developers, if they
are not going to use the Windows platform, we have created several component frames [1].
These frames help to produce the component skeletons by a text editor.

As was explained above, a new component can be derived from the existing one by
means of the inheritance mechanism, e.g., to extend the component applicability. A new
component can be developed by aggregation of the existing components. For the last case the
child component public API's methods can be called by references.

We would stress that for the developer, which is working on the creation of a component,
by aggregation of other components, practically there are no limitations to create an efˇcient
component code, e.g., as compared with the standard C++ coding. In this case the component
coding is even simpliˇed. For example, no efforts are required to create and destroy the
child component objects. To provide more Lexibility for the C++ code developer we have
introduced the so-called general and virtual components.

The ˇrst one is a component without the input and matching interfaces. Such component
is assumed to be only as an aggregated component. The object of a virtual component cannot
be created. The interaction between aggregating components is connected with their data
exchange. We have developed the data transfer classes [1] (see below) to support the data
exchange between hadronic model components.

2.8. Component Collaboration. Besides of the component aggregation, our component
can participate in another type of the component interaction: the component collaboration.

The component collaboration is the interaction between components by means of the data
bus. For this type of interaction the components are able to collaborate in the situations, when
they are isolated from each other. It means either there are no common exchange objects as



40 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

Fig. 9. Sub-component substitution

above discussed objects of the data transfer classes or the components have no common code,
e.g., no common INCLUDE ˇles or the components are performed in separate processes, etc.
To provide such component independence we have developed the data ˇle as the data bus
and the output and matching component interfaces, which were discussed above.

Fig. 10. Component collaboration by the data ˇle bus

3. NiMax DATA FILE

Discussing the component we have already shown an important role of the data ˇle. We
can even consider our component as an entity, which can write data by means of the output
interface on the NiMax data ˇle and read data by means of matching interface from it.

An essential feature of our data ˇle is that it can be useful also outside the framework.
The idea is to write data together with their conˇguration, which is based on the list of basic
data types [1]. Thus, these data can be read within any other package.

3.1. Data File Structure. The data ˇle structure is shortly explained in Fig. 11. Of course,
the data ˇle has its header (it is not shown in Fig. 11), which is needed to identify the ˇle
and facilitate the navigation through it.



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 41

Fig. 11. Data ˇle structure

The data ˇle is separated into two parts: the event conˇguration part and the event data
part. The event conˇguration part has also its own header and the list of event deˇnitions
with the event unique identiˇers.

The event conˇguration header keeps the statistical information about events, e.g., the
number of events of the given type. Each event deˇnition includes tree structured channel
deˇnitions deˇning channel identiˇers, their types and having more information [1].

As we already explained (see also [1]) a user has the possibility of customizing the event
conˇguration that can be written by a particular component through its output interface view.

The event data part consists of the event records, where the tree structured data are
written. Each of them has its own header, where the information to restore the history of the
generated physical event [1] and the information to navigate through the data can be found.

Fig. 12. Data ˇle views

3.2. Data File Views. A possibility of
visualizing data ˇle content by means of the
data ˇle views is shown in Fig. 12. A user can
visualize either written data conˇguration or
written data themselves as well as to visualize
some statistical information about the data.

3.3. Predeˇned Event Views. We suggest
to write to the data ˇle the so-called predeˇned
events [1]. These events are prefabricated for
deˇnite views within our framework. To deal
with such events, the framework control sys-
tem needs to know only their identiˇers (see
Fig. 13)).

The component parameter set, the compo-
nent input maps and the component matching

maps as well as the one-, two- and three-dimensional histograms can be stored as such events.



42 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

The component predeˇned events are component states and they can be used to re-execute
components.

Fig. 13. Predeˇned event views

4. NiMax APPLICATION DOMAIN MODULES

We should note that the built framework components are not completely independent in
the sense that they can use some common data, functions and classes related to the hadronic
models. These are physical units, physical constants and physical tables, kinematics functions,
data transfer classes [1], etc.

Of course, a hadronic model developer is able to build the independent components, e.g.,
to develop a component with the built in code physical tables. But it leads to inefˇcient use
of the computer memory and makes difˇculties to handle such tables.

Developing the hadronic model related software, which does not belong to the particular
components, we had in mind to facilitate the work of a hadronic model component developer
(see [1]). Such development is argued by more efˇcient use of computer resources as well.

Thus, components are packaged into modules in a variety of ways together with their
application domain environments.

4.1. Hadronic Components. A large number of the hadronic model components have
been already implemented and included into the hadronic model modules [2] (see also [3])
according to their applications.

These modules are prepared as the dynamic link libraries.
4.2. Physical Units and Constants. In this category we include, e.g., deˇnitions of the

MeV, the GeV, the barn, the Plank constant, etc. We have adopted convenient strategy to use
physical units and physical constants from the GEANT4 [4].

4.3. Hadronic Tables. These tables store the information about physical properties of
particles and nuclei as well as hadronic interaction cross sections. Such information is
requested in the read-only mode. This fact opens a possibility of handling tables by external
tools, e.g., by the external databases.

4.4. Utility Functions and Classes. There are many developed functions, e.g., the kine-
matics functions, the random number generators as well as many classes, e.g., the integrators
that belong to this category.



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 43

4.5. Data Transfer Classes. The objects of the data transfer classes are mediated in
the data exchange between components (see [1] for more details) in the case of component
aggregation. For example, these classes are useful for component data output, for the output
of the generated physical event history and to implement universal numerical algorithm [1].

Using the data transfer name we would stress that set of classes providing such func-
tionality can be developed in different application domains. Within our framework we have
no strict recommendations how to build such classes. The most important thing is that any
object of the data transfer class should support serialization in the sense that it needs methods
to write to the data ˇle and read from the data ˇle its object states. Taking into account this
fact we have created the data transfer class wizard (similarly as for the component wizard
mentioned above) with the aim to help a model component developer.

4.6. Predeˇned Event Classes. We have developed a set of classes to support the
predeˇned events discussed above. These are the histogram related classes. These classes are
similar as the data transfer classes in the sense that they support serialization.

5. NiMax CONTROL SYSTEM

The framework control system has two sides as it is illustrated in Fig. 14. From one side
it controls all framework internal processes. On the other hand, it provides a shell between
the user interface and the framework parts. Thus, the framework control system methods can
be respectively separated into the internal processes related group and the user related group.
The framework control system can also be divided into the data ˇle control system and the
component control system. Such division makes sense because the data ˇle, the data ˇle
views and the data ˇle control system can be joined into the data ˇle system having its own
applications. The component control system includes the methods to manage the data ˇle.
From this point of view we can consider the component control system as the system, which
is derived from the data ˇle system.

5.1. Component Life Cycle. In spite of the fact that the component life cycle consists
mostly of internal framework processes, which are hidden from framework user we would
like to give an idea about it (see also [1]). There are many possibilities for a user to affect
the component life cycle. It includes several phases: the component instance creation phase,
the edition phase, the execution phase and the destruction phase.

The control system creates the context of an environment for a component object, which
will be created, before to start the object creation procedure. The context deˇnes creation
mode, option variables, which are set to default values, the output and input ˇles, if they will
be used. A user is able to modify these option variables by means of the user interface, e.g.,
a user can either set own default parameters, own input and matching maps or suppress some
predeˇned event output or suppress the runtime information output, etc.

There are two special modes of any component (excepting the virtual one) instance
creation. The ˇrst special mode is the instance creation for only information purpose. This
means that a user cannot make any changes of a component object. This mode provides
possibility for a user to learn the component structure by the user interface. The second
special mode is the debug mode. It gives possibility of creating general component instance
as the main one without the permission to execute it. This mode is added in order to debug
the component interfaces.



44 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

Fig. 14. Control system work

In the case of composite component, the aggregating component instance is created at
ˇrst. Then control system will create its child component instances. The order of the child
instance creation follows their deˇnition order in the parent component. In order to create
any component object the framework control system needs to know only the component's
identiˇer. It uses the child component's identiˇers to look for their factories. If a factory is not
found, the control system tries to ˇnd an alternative component according to the component
proxy deˇnitions and the component hierarchy. A user is able to control this process changing
the context object and enabling or disabling the component substitution. The creation process
is repeated for each child component and for their children until all component objects will
be created.

The destruction phase for the created component objects is fulˇlled in the back order as
compared with the construction phase without the user inLuence.

During the component edition phase a user will be able to edit parameters and input or
matching maps as well as reconˇgure component's output. The check methods are called
to control the consistency of the edition. In the case of nonconsistency these methods send
warning messages and set back default values of the non-consistent variables.

During the execution phase the control system supports the component runtime informa-
tion output: the information messages, warning messages and error messages (see [1]). In
the case of an error the control system detects itself the place of the error and a component
developer does not need to make special efforts to solve this task.



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 45

5.2. Component and Data File Navigation. The tree structure is heavily used in our
framework, e.g., the tree structure of the composite components and the tree structure of the
data events. Thus the methods to navigate through a composite component and through the
data ˇle are similar due to their structural similarity.

Here we would like to mention that using ˇle navigation methods a model developer is
also able to write the adapter or driver tools to transform the data written down our data ˇle
into the input data, which are acceptable for the external packages.

5.3. Component Librarian. The control system fulˇlls the component librarian functions.
It allows a user to visualize the total list of the components, included into the framework, and
to register the required component. Together with the component views it offers a component
user the possibility to visualize and handle component input maps, component matching maps,
component parameters and component output conˇgurations by the user interface (see also
[1]). It checks the edition consistence for the parameters, the input maps and the matching
maps. It offers and controls the possibility of substituting a component by an alternative
component. For the component, which is assumed to start its run obtaining the needed data
from the data ˇle by means of a matching interface, a user has the possibility to navigate
through the data ˇle and to perform an attach command to attach the output data ˇle for such
component.

5.4. Help Information. Besides the runtime information and the different information
messages, which can appear during the component life cycle, the control system offers more
detailed help information for the framework user. This information is presented as the html
ˇles and can be visualized by any web-browser. The main idea of such help realization is
to bind a unique identiˇer (each component has such identiˇer, each error message has such
identiˇer, each predeˇned event has such identiˇer, etc.) with a html help ˇle [see also [1]).
We have also constructed the html ˇle templates to facilitate the work of the component
developers.

6. NiMax PROJECT

The component collaboration opens the possibility to join several components into the
projects offering an easy way to develop very sophisticated hadronic models from the ready
components.

Fig. 15. Pipeline component collaboration

For the particular project a user has to deˇne the component execution Low. The
component matching maps should also be registered. So far only the projects, where their
components have the pipeline collaboration (see Fig. 15), are allowed.



46 Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event

We would remark that the data ˇles can be loaded in memory improving the project
performance and the history of generated physical events [1] will not be lost for the given
project, because we keep knowledge from which data event and from which data ˇle the
particular component was started.

The simple pipeline project logic limits the set of hadronic models that can be developed.
The next step we are working on is to create a project in the situations, when either several
components can start their runs from the same data ˇle, as it is shown in Fig. 16 or one
component can take its input from different data ˇles.

Fig. 16. Tree-type component collaboration

These projects are much more complicated as compared with the pipeline projects due
to different reasons. For example, in this case the framework control system should govern
the project execution process. Each component, as a result of its execution, produces the
data events. The framework control system should dispatch the suitable (according to the
component matching maps) events as inputs for other components in a project. The framework
control system should offer the project navigation as well. This situation requires also to
develop project views in order to select, create, edit and execute projects by means of the
user interface.

7. CONCLUSION

We have discussed several important aspects of the NiMax framework. It is a new
component approach to develop, assemble and use event generators in HEP. Further work on
the NiMax framework is in progress. In conclusion we would like to thank our colleagues
and members of the ALICE group at the Jyvéaskyléa University for stimulating discussions.
We would express our special thanks for W.Trzaska for collaboration.

References

1. Amelin N., Komogorov M. Å JINR Rapid Communications, 1999, No.5-6[97]-99, p.52.



Amelin N., Komogorov M. NiMax: A New Approach to Develop Hadronic Event 47

2. Amelin N., Komogorov M. Å NiMax Hadronics: Model Components, in preparation.

3. Amelin N. Å Physics and Algorithms of the Hadronic Monte-Carlo Event Generators.
Notes for a developer. CERN/IT/99/6.

4. Kruglinski D. J., Shepherd G., Wingo S. Å Programming Microsoft Visual C++, Fifth
Edition, Microsoft Press, 1998.

5. Wenaus T. et al. Å GEANT4: An Object-Oriented Toolkit for Simulation in HEP,
CERN/LHCC/97-40.

Received on May 22, 2000.


