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The two-variable Integrodifferential Equation Approach (IDEA) valid for A nucleons is general-
ized to describe quantum-mechanical systems consisting of A, unequal mass, particles. The method is
based on an expansion of the wave function in Faddeev amplitudes for the various particle pairs and a
subsequent expansion of them in terms of potential harmonics. Projecting the resulting Faddeev-type
equations on a speciˇc two-body space and spinÄisospin channel one obtains coupled, two-variable,
integrodifferential equations describing the system. These equations can be readily applied, for ex-
ample, to hypernuclear systems such as the double hypernucleus ΛΛα which can be handled either
as a three- or as a six-body problem. We demonstrate our approach by applying it to various single
and double hypernuclei and compare the results to those obtained by other methods.

�·¨¡²¨¦¥´¨¥ ¨´É¥£·μ¤¨ËË¥·¥´Í¨ ²Ó´μ£μ Ê· ¢´¥´¨Ö ¤¢ÊÌ ¶¥·¥³¥´´ÒÌ ¤²Ö A-´Ê±²μ´μ¢ μ¡μ¡-
Ð ¥É¸Ö ¸ Í¥²ÓÕ μ¶¨¸ ´¨Ö ±¢ ´Éμ¢μ-³¥Ì ´¨Î¥¸±¨Ì ¸¨¸É¥³, ¸μ¸ÉμÖÐ¨Ì ¨§ A-Î ¸É¨Í ¸ ´¥· ¢´Ò³¨
³ ¸¸ ³¨. Œ¥Éμ¤ μ¸´μ¢ ´ ´  · §²μ¦¥´¨¨ ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¶μ Ë ¤¤¥¥¢¸±¨³  ³¶²¨ÉÊ¤ ³ ¤²Ö
· §²¨Î´ÒÌ ¶ · Î ¸É¨Í ¨ ¶μ¸²¥¤ÊÕÐ¥³ ¨Ì · §²μ¦¥´¨¨ ¶μ ¶μÉ¥´Í¨ ²Ó´Ò³ £ ·³μ´¨± ³. �·μ¥±É¨-
·ÊÖ ¶μ²ÊÎ¥´´Ò¥ ¢ ·¥§Ê²ÓÉ É¥ Ê· ¢´¥´¨Ö Ë ¤¤¥¥¢¸±μ£μ É¨¶  ´  ¸¶¥Í¨ ²Ó´μ ¢Ò¡· ´´μ¥ ¤¢Ê³¥·´μ¥
¶·μ¸É· ´¸É¢μ ¨ ¸¶¨´-¨§μ¸¶¨´μ¢Ò° ± ´ ², ³μ¦´μ ¢Ò¶¨¸ ÉÓ ¸¢Ö§ ´´Ò¥ ¨´É¥£·μ¤¨ËË¥·¥´Í¨ ²Ó´Ò¥
Ê· ¢´¥´¨Ö ¸ ¤¢Ê³Ö ¶¥·¥³¥´´Ò³¨ ¤²Ö μ¶¨¸ ´¨Ö ¸¨¸É¥³Ò. “· ¢´¥´¨Ö ³μ¦´μ ¶·¨³¥´ÖÉÓ, ´ ¶·¨³¥·,
± £¨¶¥·´Ê±²μ´´Ò³ ¸¨¸É¥³ ³, É ±¨³ ± ± ¤¢μ°´μ¥ £¨¶¥·ÑÖ¤·μ ΛΛα, ±μÉμ·μ¥ ³μ¦´μ · ¸¸³ É·¨¢ ÉÓ
± ± É·¥Ì- ¨²¨ Ï¥¸É¨Î ¸É¨Î´ÊÕ § ¤ ÎÊ. ‚ ± Î¥¸É¢¥ ¶·¨³¥·  ¨¸¶μ²Ó§μ¢ ´¨Ö ´ Ï¥£μ ¶·¨¡²¨¦¥-
´¨Ö ¶·¨¢μ¤¨É¸Ö ¥£μ ¶·¨³¥´¥´¨¥ ± · §²¨Î´Ò³ μ¤¨´μÎ´Ò³ ¨ ¤¢μ°´Ò³ £¨¶¥·ÑÖ¤· ³, ·¥§Ê²ÓÉ ÉÒ
¸· ¢´¨¢ ÕÉ¸Ö ¸ ¤ ´´Ò³¨, ¶μ²ÊÎ¥´´Ò³¨ ¤·Ê£¨³¨ ³¥Éμ¤ ³¨.

PACS: 11.80.Jy; 21.80.+a

INTRODUCTION

Multistrange hypernuclei consisting of various hyperons (Λ, Ξ, Σ, etc.) have
been the subject of numerous experimental and theoretical works during the
last few decades (see, for example, [1Ä3] and references therein). To handle
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such systems, various approaches have been employed based on cluster models,
G-matrix theory, variational methods, and resonating group model, just to mention
a few of them. Thus, Yamada and Ikeda [4] used a microscopic cluster model to
study the 7

ΣLi system; Hiyama et al. [5] used a variational method with Jacobi-
coordinate Gaussian-basis functions to study the Λ − Σ conversion in 4

ΛHe and
4
ΛH systems. Similar methods were used by Nemura and collaborators [6, 7] to
investigate several light Λ and ΛΛ hypernuclei up to A = 6 and by Shoeb et al. [8]
who study s- and p-shell double hypernuclei variationally. G-matrix methods were
also employed [9].

The methods used, albeit powerful, are quite complicate in applications. A
more rigorous approach is the one based on Faddeev equations which, however,
are restricted to three- and four-body systems. We recall here the Faddeev
calculations for the Λ(Σ)NN system [10] and the extensive investigations carried
out by Filikin and co-workers for various hypernuclei (Λnp, 9

ΛBe, 13
ΛC, 10

ΛΛBe,
etc.) considered as three- and four-body systems [11Ä15]. Going beyond four-
particle systems via the Faddeev formalism is not at present feasible and therefore
one has to resort to clusters and the use of effective intercluster interactions. The
construction of these interactions is not an easy task at all due, mainly, to the
limited availability of the relevant spectrum and scattering data. Thus, it is not
unusual to have binding energies obtained with various potentials and differing
by a few MeV.

An alternative method, based on hyperspherical harmonics, was suggested
by Adam and Fiedeldey [16,17]. After expanding the wave function in Faddeev
amplitudes for the various particle pairs and a further expansion in potential
harmonics [18], one obtains two-variable integrodifferential equations for the
A-particle system by projecting the equations on a speciˇc two-body space and
spinÄisospin channel. For equal mass particles, the method has been successfully
applied in the past by Fabre and collaborators [19Ä25]. The IDEA, as is nowadays
known, includes the two-body correlations into account exactly while higher order
correlations are included via the hypercentral approximation quite satisfactorily
without increasing the complexity of the equations. Three-body forces can also
be included in a straightforward manner [19].

In the present work we describe how to generalize the IDEA method to
unequal masses systems with the inclusion of spin and isospin states. We demon-
strate the applicability of the method by considering various single and double
hypernuclei and compare the results with those obtained by other approaches.

In Sec. 1 we describe the method and give the necessary details. In Sec. 2
we present some applications and compare the results obtained with those of
other methods. Conclusions are drawn in Sec. 3 while some technical details
concerning hyperspherical coordinates, the projection on the rij space, and a
practical approach to spinology, are given in the Appendices.
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1. THE INTEGRODIFFERENTIAL EQUATION APPROACH

We consider A = N + 1 particles of mass mi, i = 1, . . . , A, interacting
via pairwise forces. We assume that na of them are particles of mass ma

forming the set a, nb of mass mb forming the set b, etc. Then one may have
Na = na(na − 1)/2 possible pairs in the set a forming the particle channel A,
Nb = nb(nb − 1)/2 pairs in b forming B, Nc = nanb pairs formed by particles
from the set a and b forming the particle channel C and so on. In the description
of the formalism we shall assume, for clarity, that we have two types of particles
and therefore a maximum of three types of pairs can be formed from them; the
description for the general case is straightforward.

In the Faddeev formalism, the total wave function for the system can be
expanded as

Ψ(x) =
∑
ij

ψA
ij(x) +

∑
kl

ψB
kl(x) +

∑
mn

ψC
mn(x) ≡

∑
ij∈c′

ψc′

ij(x), c′ = A, B, C, (1)

where x is the coordinates vector; (ij), (kl), and (mn)) are the pairs within
each set (e.g., NiNj , ΛkΛl, NmΛn), and ψc

ij , c = A, B, C, are the Faddeev
components satisfying the equation

(T − E)ψc
ij(x) = −V c

ij(rij)
∑

c′=A,B,C

[∑
kl∈c′

ψc′

kl(x)

]
. (2)

The corresponding chain of Jacobi coordinates ξ = {ξ1, ξ2, . . . , ξN ,X} are de-
ˇned in terms of position coordinates for the particles, x = {x1,x2, . . . ,xA},

ξi =
[

2A

MT

Mimi+1

Mi+1

]1/2
⎛⎝xi+1 −

1
Mi

i∑
j=1

mjxj

⎞⎠ , i = 1, . . . , N, (3)

where mi is the mass of particle i, Mi =
i∑

j=1

mj ; X is the center-of-mass

coordinate, and MT is the total mass. Further details on this system of coordinates
are given in Appendices A and B. The ˇrst coordinate ξ1 will also be denoted by
rij to indicate that the pair (ij) is chosen as the reference particle pair.

For states which are invariant by rotation in the (D − 3)-dimensional space
and spanned by the N − 1 vectors, ξ2, ξ3, . . . , ξN , the amplitudes ψc

ij(x) can be
written as a function of the collective variable r and rij

ψc
ij(x) = F c

ij(rij , r), ij ∈ c. (4)
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Therefore,

(T − E)F c
ij(rij , r) = −V c

ij(rij)
∑
c′

[∑
kl∈c′

F c′

kl (rkl, r)

]
, (5)

where the summation includes all pairs (kl) in each channel c′.
To extract the equation for the amplitude F c(rij , r) ≡ F c

ij(rij , r) for the pair

(ij), we ˇrst expand it in potential harmonics P�,m
2K+�(Ωij) (see Appendix C)

F c(rij , r) =
∞∑

K=0

P�,m
2K+�(Ωij)U

c,�
K (r), (6)

where the radial functions U c,�
K (r) are given in terms F c(rij , r) by

U c,�
K (r) =

∫
P�,m

2K+�(Ωij)F c,�(rij , r) dΩ. (7)

Then we project on the rij space which requires the evaluation of 〈rij |F c(rkl)〉.
As is shown in Appendix C this is given by

〈rij |F c(rkl)〉 =
∑
K

〈P�,m
2K+�(cos 2φij)|P�,m

2K+�(cos 2φkl)〉P�,m∗
2K+�(Ωij)×

×
∫

P�,m∗
2K+�(Ωkl)F c(rkl, r) dΩ. (8)

An expression for matrix elements 〈P�,m
2K+�(cos 2φij)|P�,m

2K+�(cos 2φkl)〉 for equal
mass particles has been derived in [18,26] with the help of the kinematical rotation
vector while for unequal mass particles in [16] the result being

〈P�,m
2K+�(Ωij |P�,m

2K+�(Ωkl)〉 = cos φ�
ij

Pα,β+�
K (cos 2ϕkl

ij )

Pα,β+�
K (1)

. (9)

The angles ϕkl
ij depend on whether the pair (kl) is identical to (ij), or joint, such

as (12) and (14), or disjoint, such as (12) and (45), and can be obtained by (see
Appendix B)

cos 2ϕkl
ij =

⎧⎪⎪⎨⎪⎪⎩
+1 if (kl) = (ij),
mimk − mj(mi + mj + mk)
mimk + mj(mi + mj + mk)

if (kl) and (ij) are joint,

−1 if (kl) and (ij) are disjoint.

(10)

The subscript ij is to remind us that these angles are those corresponding to the
case where the ˇrst pair in the Jacobi coordinates corresponds to the (ij) pair.
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In our applications we consider � = 0 only and therefore terms with this
index will be omitted from now on. The inclusion, however, of higher partial
waves under the assumption that the pair (ij) is in that state, is trivial and entails
the additional term, �̂2/(1+z) in the Hamiltonian (C.6) and the �-dependent terms
in Eq. (C.21).

Instead of the coordinates rij and r one may introduce the (z, r) set where
z = cos 2φ1 = 2r2

ij/r2 − 1 and r. Then, letting

f(z, z′, cos 2ϕkl
ij ) = W (z′)

∞∑
K=0

Pα, β
K (z)Pα, β

K (z′)
Pα, β

K (cos 2ϕkl
ij )

Pα, β
K (1)hα,β

K

, (11)

where the constant hα,β
K is introduce to take care of the normalization,

hα,β
K =

+1∫
−1

W (z)[Pα, β
K (z)]2 dz, (12)

and W (z) for the weight function

W (z) = (1 − z)α(1 + z)β, α = (D − 5)/2, β = 1/2, (13)

we obtain the projection functions for channel c

f c(z, z′) =
Np∑

c′=1

∑
(kl)∈c′

f c
A(z, z′; cos 2ϕkl

ij ) =
Np∑

c′=1

Fc
c′(z, z′) (14)

with obvious notation. Finally, letting

F c(rij , r) = r−(D−1)/2P c(z, r), z = 2(rij/r)2 − 1

we obtain the integrodifferential equation for the Faddeev-type components P c(z, r){
�

2A

M
Hrz − E

}
P c(z, r) = −V c

(
r

μc

√
(1 + z)/2

)
×

×

⎡⎣P c(z, r) +
Np∑

c′=1

+1∫
−1

Fc
c′(z, z′)P c′(z′, r) dz′

⎤⎦ , (15)

where

Hrz = − ∂2

∂r2
+

L(L + 1)
r2

− 4
r2

1
W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z
, (16)
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L = (D − 3)/2, and μc is the reduced mass for the channel c,

μc =
[

2Amimj

M(mi + mj)

]1/2

, ij ∈ c. (17)

Equation (15) can be written in a more transparent matrix form (for simplicity
we assume that we have two channels only)(

Hrz + V A − E 0
0 Hrz + V B − E

)(
PA

PB

)
=

= −
(

V A 0
0 V B

)(
F̂AA F̂AB

F̂BA F̂BB

)(
PA

PB

)
, (18)

where the operators F̂cc′ are such that

F̂cc′P c′ =

+1∫
−1

Fc
c′(z, z′)P c′(z′, r). (19)

Note that in the diagonal operators F̂cc the (kl) = (ij) elements should be
excluded as this term has been shifted to the left.

The reduced equation, Eq. (15), is S-projected and thus it excludes the effects
of higher partial waves. These effects can be included, albeit approximately and
in an average way, using the hypercentral potential for each channel. This is
deˇned by

V c
0 (r) =

1
h0

+1∫
−1

W (z)V c

(
r

μc

√
(1 + z)/2

)
dz, (20)

where the normalization factor h0 is given by (12) for K = 0. Introducing V c
0 (r)

into both sides of (15) we obtain the IDEA equation(
GA

zr − E 0
0 GB

zr − E

)(
PA

PB

)
=

−
(

ΔV A 0
0 ΔV B

)(
F̂AA F̂AB

F̂BA F̂BB

)(
PA

PB

)
, (21)

where now

Gc
zr =

�2A

M

[
Hrz +

∑
c′

νc′V
c′

0 (r)

]
+ ΔV c (22)
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with

ΔV c = V c

(
r

μc

√
(1 + z)/2

)
− V c

0 (r) (23)

and νc is the number of pairs in a given type c. Note that
∑
c

νc = A(A − 1)/2,

the total number of pairs.
From the above it is clear that the extension of the IDEA to unequal mass

particles results in no major complications and that the equations to be solved are
still quite simple and easy to apply to systems consisting of particles with unequal
masses. These equations are, however, coupled, and the number of channels in
the coupled system is equal to the number of different type of particle pairs
present, e.g., NN , NΛ, and ΛΛ.

The solution of Eq. (21) can be achieved either by solving it as a two-
dimensional integrodifferential equation, or via adiabatic approximations [19,23].
In the Extreme Adiabatic Approximation (EAA) we assume that the amplitude
can be written as a product

P c(z, r) = P c
λ(z, r)uλ(r). (24)

This implies that the orbital motion is very rapid as compared to the radial motion
and contains most of the energy. Then Eq. (21) can be split into two equations,
namely,[(

DA 0
0 DB

)
+
(

ΔV A 0
0 ΔV B

)(
F̂AA F̂AB

F̂BA F̂BB

)](
PA

PB

)
=

= Uλ(r)
(

PA

PB

)
(25)

with

Dc =
�

2A

M

4
r2

1
W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z
+ ΔV c

from which we determine, for each r, the eigenpotential Uλ(r) which is used to
evaluate the binding energy EEAA

λ from the second equation,

�2A

M

[
− d2

dr2
+

L(L + 1)
r2

+
∑
c′

νc′V
(c′)
0 (r)+Uλ(r)

]
uλ(r) = EEAA

λ uλ(r). (26)

The EAA provides a lower bound and the accuracy achieved for nuclear systems
depends of the short range characteristics of the underlying nucleonÄnucleon
forces. For soft potentials the accuracy is of the order of 0.2% and it can be
further improved by using the Uncoupled Adiabatic Approximation (UAA) [19].
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1.1. Spin-Dependent Forces. 1.1.1. The System abc. Let us consider a system
of three particles a, b, and c of unequal masses in which spinÄisospin states of
speciˇc symmetry are present for all three pairs. We denote the three interparticle
pairs by α = (12), β = (31), and γ = (23) and assume that the total potential is
of the form

VT (x) =
∑
γ′

[
V 1+(rγ′)P 1+

γ′ + V 3+(rγ′)P 3+
γ′ =

+ V 1−(rγ′)P 1−
γ′ + V 3−(rγ′)P 3−

γ′

]
≡
∑
γ′

Vγ′ , (27)

where γ′ runs over all pairs α, β, γ; and Pn±
α , n = 1, 3, are the spinÄsinglet and

spinÄtriplet projection operators, respectively. The total wave function may be
written as

ΨT (x, στ) = Yα + Yβ + Yγ , (28)

where σ (τ ) is the three-body spin (isospin), and

Yγ′ = |A′
γ′〉ψS′

γ′ + |A〉ψS
γ′ + |S′

γ′〉ψA′

γ′ + |S〉ψA
γ′ , γ′ = α, β, γ, (29)

where S′, S, A′, and A, denote the mixed symmetric, fully symmetric, mixed
antisymmetric, and fully antisymmetric states while |A′〉, |A′〉, |S′〉, and |Sγ′〉
are the corresponding three-body spinÄisospin states.

The Faddeev equations then read

(H0 − E)Yα = −Vα(Yα + Yβ + Yγ),
(H0 − E)Yβ = −Vβ(Yα + Yβ + Yγ), (30)

(H0 − E)Yγ = −Vγ(Yα + Yβ + Yγ).

The projection on the rα space is independent of the spinology of the system.
Thus, we will concentrate on the spinÄisospin projection.

Restricting ourselves, for simplicity, to even states only, i.e, to ψS
γ′ and ψS′

γ′

states, γ′ = α, β, γ, and projecting with 〈A′
α|〈rα| and 〈A|〈rα| results in the

following system for the pair α,

(H0 − E)ψA′

α = −
∑

n=1+,3+

V n
α

[
〈A′

α|Pn
α |A′

α〉ψS′

α + 〈A′
α|Pn

α |A〉ψS
α+

+〈A′
α|Pn

α |A′
β〉IS

′

αβ +〈A′
α|Pn

α |A〉ISαβ + 〈A′
α|Pn

α |A′
γ〉IS

′

αγ + 〈A′
α|Pn

α |A〉ISαγ

]
(31)

and

(H0 − E)ψS
α = −

∑
n=1+,3+

V n
α

[
〈A|Pn

α |A′
α〉ψS′

α + 〈A|Pn
α |A〉ψS

α+

+ 〈A|Pn
α |A′

β〉IS
′

αβ + 〈A|Pn
α |A〉ISαβ + 〈A|Pn

α |A′
γ〉IS

′

αγ + 〈A|Pn
α |A〉ISαγ

]
(32)
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with

In
αβ =

+1∫
−1

f(z, z′; cos 2ϕβ
α)ψn

β (z′) dz′, n = S′ or S. (33)

Note that, since we are dealing with a three-particle system, in (33) only one
term exists for each channel. Similar projections are valid for the Yβ and Yγ

components.
We may use now the recoupling relations (see Appendix D)

|A′
β〉 = −1

2
|A′

α〉 +
√

3
2

|S′
α〉, |A′

γ〉 = −1
2
|A′

α〉 −
√

3
2

|S′
α〉 (34)

and the projections

〈A|P 1+
α |A〉 = 〈A|P 1+

α |A′
α〉 = 〈A′

α|P 1+
α |A′

α〉 =

= 〈A|P 3+
α |A〉 = −〈A|P 3+

α |A′
α〉 = 〈A′

α|P 3+
α |A′

α〉 =
1
2

(35)

to obtain

(−H0 + E)ψS′

α = V+
α (ψS′

α + λ−IS
′

αβ + λ+IS
′

αγ) + V−
α (ψS

α + ISαβ + ISαγ),

(−H0 + E)ψS
α = V−

α (ψS′

α + λ−IS
′

αβ + λ+IS
′

αγ) + V+
α (ψS

α + ISαβ + ISαγ),
(36)

where we let

V±
α (z, r) =

V 1+
α (r/μα

√
(1 + z)/2) ± V 3+

α (r/μα

√
(1 + z)/2)

2
(37)

and λ± = −1
2
±

√
3

2
. The other channels can be obtained by cyclic permutations.

Equations (36) are reduced to the SIDE equations by letting

ψn
α((z, r) = r−(D−1)/2Pn

α (z, r) (38)

to obtain{
�2A

M

[
−Hr +

4
r2

Hz

]
+ E

}
PS′

α (z, r) = V+ΠS′

α (z, r) + V−ΠS
α(z, r), (39){

�2A

M

[
−Hr +

4
r2

Hz

]
+ E

}
PS

α (z, r) = V−ΠS′

α (z, r) + V+ΠS
α(z, r). (40)

The Hr and Hz are given by

Hr = − ∂2

∂r2
+

L(L + 1)
r2

, Hz =
1

W (z)
∂

∂z
(1 − z2)W (z)

∂

∂z
, (41)
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while

ΠS′

α (z.r) = PS′

α (z, r) + λ−IS
′

αβ(z, r) + λ+IS
′

αγ(z, r), (42)

ΠS
α(z.r) = PS

α (z, r) + ISαβ(z, r) + ISαγ(z, r). (43)

For the β and γ channels we have the terms

ΠS′

β (z.r) = PS′

β (z, r) + λ−IS
′

βγ(z, r) + λ+IS
′

βα(z, r), (44)

ΠS
β (z.r) = PS

β (z, r) + ISβγ(z, r) + ISβα(z, r) (45)

and

ΠS′

γ (z.r) = PS′

γ (z, r) + λ−IS
′

γα(z, r) + λ+IS
′

γβ(z, r), (46)

ΠS
γ (z.r) = PS

γ (z, r) + ISγα(z, r) + ISγβ(z, r). (47)

The IDEA equations are easily obtained:⎧⎨⎩�
2A

M

⎡⎣−Hr +
∑
γ′

V0,γ′(r) +
4
r2

Hz

⎤⎦+ E

⎫⎬⎭PS′

α (z, r) =

=
(
V+(z, r) − V0,α

)
ΠS′

α (z, r) + V−(z, r)ΠS
α(z, r), (48)⎧⎨⎩�2A

M

⎡⎣−Hr +
∑
γ′

V0,γ′(r) +
4
r2

Hz

⎤⎦+ E

⎫⎬⎭PS
α (z, r) =

= V−(z, r)ΠS′

α (z, r) +
(
V+(z, r) − V0,α

)
ΠS

α(z, r) (49)

and similarly for the other two pair-channels β and γ.
For equal mass particles of mass m, the Faddeev components are the same

and the above system reduces to{
�

2

m

[
−Hr + 3V0(r) +

4
r2

Hz

]
+ E

}
PS′

(z, r) =

=
(
V+(z, r) − V0

)
ΠS′

(z, r) + V−(z, r)ΠS(z, r), (50)

{
�2

m

[
−Hr + 3V0(r) +

4
r2

Hz

]
+ E

}
PS(z, r) =

= V−(z, r)ΠS′
(z, r) +

(
V+(z, r) − V0

)
ΠS(z, r), (51)

i.e., one recovers the three-nucleon equations [22].
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1.1.2. The System aab. Here we have again the α = (12), β = (31), and
γ = (23) channels but the latter two give the same projections. Assuming, as in
the abc case, that there are only singlet and triplet even states, the system (36) is
written as

(−H0 + E)ψS′

α = V+
α

[
ψS′

α − IS
′

αβ

]
+ V−

α

[
ψS

α + 2ISαβ

]
,

(−H0 + E)ψS
α = V−

α

[
ψS′

α − IS
′

αβ

]
+ V+

α

[
ψS

α + 2ISαβ

]
,

(−H0 + E)ψS′

β = V+
β

[
ψS′

β + λ−IS
′

βγ + λ+IS
′

βα

]
+ V−

β

[
ψS

β + ISβγ + ISβα

]
,

(−H0 + E)ψS
β = V−

α

[
ψS′

β + λ−IS
′

βγ + λ+IS
′

βα

]
+ V+

β

[
ψS

β + ISβγ + ISβα

]
,

(−H0 + E)ψS′

γ = V+
γ

[
ψS′

γ + λ−IS
′

γα + λ+IS
′

γβ

]
+ V−

γ

[
ψS

γ + ISγα + ISγβ

]
,

(−H0 + E)ψS
γ = V−

γ

[
ψS′

γ + λ−IS
′

γα + λ+IS
′

γβ

]
+ V+

γ

[
ψS

γ + ISγα + ISγβ

]
.

Since ψn
β = ψn

γ , by summing up the equations for the β and γ channels we ˇnally
obtain

(−H0 + E)1

⎛⎜⎜⎜⎜⎝
ψS′

α

ψS
α

ψS′

β

ψS
β

⎞⎟⎟⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

V+
α V−

α −V+
α Îαβ 2V−

α Îαβ

V−
α V+

α −V−
α Îαβ 2V+

α Îαβ

V+
β

(
−1

2
Îβα

)
V−

β Îβα V+
β

(
1 − 1

2
Îββ

)
V−

β (1 + Îββ)

V−
β

(
−1

2
Îβα

)
V+

β Îβα V−
β

(
1 − 1

2
Îββ

)
V+

β (1 + Îββ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ψS′

α

ψS
α

ψS′

β

ψS
β

⎞⎟⎟⎟⎟⎟⎠ . (52)

1.2. Presence of Spin States Only. It is clear from the above analysis that
the form of the ˇnal equations depends on the spinÄisospin states which prescribe
the symmetries for the wave function components Yγ′ as in Eq. (29). There are
cases where only the spin states play a role. One such system is the ΛΛ 3He
system, where the isospin of Λ is t = 0. Furthermore, the ΛÄΛ interaction is 1S0

and while that of Λ 3He consists of a singlet and triplet with mσ = 1/2. Thus,
one may assume the ansatz

Ψ = |σa
α〉Ψ1+

α + |σa
β〉Ψ1+

β + |σs
β〉Ψ3+

β + |σa
γ〉Ψ1+

γ + |σs
γ〉Ψ3+

γ , (53)

where the subscripts α, β, and γ stand for the pairs α = Λ1Λ2, β = Λ1
3He, and

γ = Λ2
3He. The states |σa

α〉 and |σs
α〉 are the mixed antisymmetric and mixed

symmetric three-body spin states (see Appendix D).
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Then, for the Ψ1+
α , we have the projection

(H0 − E)Ψ1+
α =

= −V 1+
α 〈σa

α|P1+
α

[
|σa

α〉Ψ1+
α + |σa

β〉I1+
αβ + |σs

β〉I3+
αβ + |σa

γ〉I1+
αγ + |σs

γ〉I3+
αγ

]
=

= −V 1+
α

[
Ψ1+

α − 1
2
I1+
αβ +

√
3

2
I3+
αβ − 1

2
I1+
αγ −

√
3

2
I3+
αγ

]
.

Note that the notation (α, β) designates the projection with the rα pair of the
component β. This corresponds to the angle ϕβ

α.
For the Ψ1+

β projection we have

(H0 − E)Ψ1+
β =

= −V 1+
β 〈σa

β |P1+
β

[
|σa

α〉I1+
βα + |σa

β〉Ψ1+
β + |σs

β〉Ψ3+
β + |σa

γ〉I1+
βγ + |σs

γ〉I3+
βγ

]
=

= −V 1+
β

[
Ψ1+

β − 1
2
I1+
βα − 1

2
I1+
βγ +

√
3

2
I3+
βγ

]
,

similarly, for Ψ3+
β ,

(H0 − E)Ψ3+
β =

= −V 3+
β 〈σs

β |P3+
β

[
|σa

α〉I1+
βα + |σa

β〉Ψ1+
β + |σs

β〉Ψ3+
β + |σa

γ〉I1+
βγ + |σs

γ〉I3+
βγ

]
=

= −V 3+
β

[
Ψ3+

β +
√

3
2

I1+
βα −

√
3

2
I1+
βγ − 1

2
I3+
βγ

]
.

For the γ channel we have

(H0 − E)Ψ1+
γ = −V 1+

γ

[
Ψ1+

γ − 1
2
I1+
γα − 1

2
I1+
γβ −

√
3

2
I3+
γβ

]
,

(H0 − E)Ψ3+
γ = −V 3+

γ

[
Ψ3+

γ −
√

3
2

I1+
γα +

√
3

2
I1+
γβ − 1

2
I3+
γβ

]
.

From the choice (53) we must have Ψ1+
β = Ψ1+

γ and Ψ3+
β = −Ψ3+

γ . We also
have Vβ = Vγ . Using these symmetries, we obtain the system

(H0 + V 1+
α − E)Ψ1+

α = −V 1+
α

[
−I1+

αγ −
√

3I3+
αγ

]
,

(H0 + V 1+
γ − E)Ψ1+

γ = −1
2
V 1+

γ

[
−I1+

γα − I1+
γβ +

√
3

2
I3+
γβ

]
, (54)

(H0 + V 3+
γ − E)Ψ3+

γ = −1
2
V 3+

γ

[
−
√

3I1+
γα +

√
3I1+

γβ + I3+
γβ

]
.

In a similar way we may construct equations for any other system of up to four
particles.
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2. APPLICATIONS

The ˇrst question addressed was about the accuracy of the adiabatic approx-
imation in the case where the systems consist of unequal mass particles. For
this we choose, as a testing, the 5

ΛHe and the 6
ΛΛHe systems where exact calcula-

tions were performed by Adam and Fiedeldey [16] using a variety of potentials.
These systems are considered as ˇve-body and six-body systems, respectively.
As input potentials we choose the BassichisÄGal ΛN (c) potential [30]; for ΛΛ,
the Dalitz potential [31], while for NN we employed three interactions of dif-
ferent characteristics, namely, the soft core Volkov potential V7 [32], the hard
core S3 potential of Afnan and Tang [33], and the Mal	iet Tjon MTV poten-
tial as modiˇed by Zabolitzky [34]. The results obtained are given in Table 1.

Table 1. Results for the 5
ΛHe system and the 6

ΛΛHe system considered as ˇve- and six-
body systems, respectively. The VΛN is that of BassichisÄGal (c) [30] and the VΛΛ is
that of Dalitz [31]

VNN

5
ΛHe 6

ΛΛHe

EEAA Eexact [16] EEAA Eexact [16]

Volkov-7 [32] 32.16 31.60 42.52 42.93
S3 [33] 31.36 30.85 42.13 41.99
MTV [34] 34.55 33.61 46.16 44.36

It is seen that the accuracy of the EAA is of the order of 1% for all potentials.
This difference can be attributed to the EAA but also to numerical inaccuracies
creeping in, especially for the MTV potential. This difference can be further
reduced by using the UAA [19]. Similar calculations can be performed for any
other system in which the particles interact via Wigner forces. Let us treat again
the 6

ΛΛHe considered as a three-body ΛΛ−α system previously treated by Filikin
and Gal within the Faddeev formalism [12] as a three-body problem. We also
consider the double hypernucleus 10

ΛΛBe assumed to be a four-body ΛΛαα system.
The ΛΛ interaction is a singlet 1S0 potential of the form

VΛΛ(r) =
3∑
i

vi exp
(
− r2

β2
i

)
, (55)

the parameters being adjusted so that (55) is the phase equivalent to the Nijmegen
hard core interactions [35]. For convenience we present these parameters in Ta-
ble 2. In the same table we give also the parameters of the Λα and αα interactions
which have the same form as (55) but with two Gaussian terms [36]. Using these
interactions we obtained results in the uncoupled adiabatic approximation which
are given in Table 3.
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Table 2. Parameters of the ΛΛ, Λα, and αα interactions. The γ parameter for the ΛΛ
potential assumes the values 0.4804, 0.5463, 0.4672, 1, and 1.2044 corresponding to the
NSC97b, NSC97e, NSC97f, ND, and ESC00 variant potentials

Potential i vi, MeV β, fm

ΛΛ [13] 1 Ä21.49 1.342
2 Ä379.1×γ 0.777
3 9324.0 0.350

Λα [36] 1 450.4 1.25
2 Ä404.9 1.41

αα [37] 1 120.0 1.53
2 Ä30.18 2.85

Table 3. UAA bound state results for the 6
ΛΛHe and 10

ΛΛBe considered as a three- (ΛΛα)
and four-body (ΛΛαα) systems

Potential
6
ΛΛHe 10

ΛΛBe

EUAA Faddeev [12] Other EUAA Faddeev [12] Other

ESC00 Ä10.83 Ä10.7 Ä10.1 [9] Ä16.94 Ä19.4 Ä18.7 [9]
ND Ä9.33 Ä9.10 Ä9.34 [5] Ä15.94 Ä17.7 Ä17.15 [5]
NSC97b Ä7.35 Ä6.60 Ä14.28 Ä15.2
NSC97e Ä7.51 Ä6.82 Ä14.50 Ä15.4
NSC97f Ä7.32 Ä14.30
Exp. Ä10.9± 0.6 [38] Ä17.6± 0.4 [39]

Ä7.25± 0.19+0.18
−0.11 [40] Ä14.5± 0.4 [13]

The results obtained using the various methods are, in overall, close to each
other. However, there is an apparent strong dependence on the potential and the
method used for calculations especially for the ΛΛαα system.

The effective adiabatic potentials, deˇned by

Veff(r) = Ueaa(r) +
∑

c

νcV
c
0 (r) +

L(L + 1)
r2

for the NSC97b, ND, and ESC00 potentials and for the ΛΛα system, are shown
in Fig. 1, a.

We note here that in the adiabatic approximation these potentials go asymptot-
ically to the corresponding binding energy of the Λα system, Ä3.106 MeV. This
asymptotic behavior is an indication that the extracted eigenpotential UEAA(r)
is correct.

Let us consider next the system ΛΛC, where C = 3H with mσ = −1/2 or
C = 3He with mσ = 1/2. Here the 1S0 ΛΛ interaction is given by potential (55)
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Fig. 1. Effective adiabatic potentials for the ΛΛα system: a) for the spin-independent
forces NSC97b, ND, and ESC00 Λα; the Veff(r) tends to the Λα binding energy of
Ä3.106 MeV; b) for the 5

ΛΛHe system with spin-dependent forces. The ˇrst two eigen-
potentials converge, as expected, to the binding energies for the singlet (Ä2.06 MeV) and
triplet (Ä1.04 MeV) Λα states

which is equivalent to the Nijmegen hard core interaction. The ΛC potential was
that of [13], namely:

V 1+(r) = 450.4 exp (−(r/1.2573)2) − 404.9 exp (−(r/1.41)2),

V 3+(r) = 450.4 exp (−(r/1.2720)2) − 404.9 exp (−(r/1.41)2).

The singlet V 1+(r) potential supports a bound state at Ä2.06 MeV; while the
triplet V 3+(r), at Ä1.04 MeV.

Applying the EAA to the system (52) we obtain the incremental bin-
ding energies ΔBΛΛ (in MeV) [13] for 3H shown in Table 4. These are in
fair agreement with those of Filikin et al. [13] and of Nemura et al. [7]. The ˇrst
two eigenpotentials for the system are shown in Fig. 1, b. As expected, they go
asymptotically to the binding energies for the singlet and triplet Λ3H states.

Table 4. Incremental binding energies ΔBΛΛ (in MeV) for the 5
ΛΛH in the extreme

adiabatic approximation. ΔBΛΛ is relative to the (2J + 1)-weighted average of the
4
ΛHe and 4

ΛH

Potential IDEA Filikin et al. [13] Nemura et al. [7]

ESC00 4.3938 3.46

ND 2.6432 2.11 2.8
NSC97e 0.6628 0.37

NSC97b 0.4953 0.11
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CONCLUSIONS

We presented a formalism based on expansion of the Faddeev amplitudes
for unequal mass particles in terms of the potential harmonics. Such an ex-
pansion implies that we choose states which are invariant by rotation in the
(D − 3)-dimensional space spanned by the N − 1 vectors, ξ2, ξ3, . . . , ξN , Jacobi
coordinates. Therefore the Faddeev amplitudes ψij(x) in this space are functions
of the collective variable r and the vector ξ1 ≡ rij only, φ(rij , r). Expanding in
terms of PH and projecting on the same basis, one obtains differential equations
which, similarly to the HH expansion case, are not practical for numerical cal-
culations. If, however, the Faddeev-type equations for amplitudes Φc(rij , r) are
ˇrst projected with 〈rij | and then expanded, one obtains coupled integrodifferen-
tial equations, describing quantum mechanical systems consisting of A, unequal
mass, particles. These equations are easy to solve either exactly by treating
them as a two-variable system or via the more practical adiabatic approxima-
tion. The latter methods can provide us also with the scattering states and in
general one may extract the dynamics of the system in an easy and straightfor-
ward way.

We ˇrst tested the EAA by comparing the results obtain for the 5
ΛHe sys-

tem and the 6
ΛΛHe system considered as ˇve- and six-body systems, respec-

tively. For the three NN considered, the difference between the EAA and
the exact results is of the order of 1.5% for 5

ΛHe and about 1% for the dou-
ble hypernucleus 6

ΛΛHe. The somewhat larger value with the MTV poten-
tial for the latter system is rather due to numerics as the exact method is
sensitive to the way the short range 1/r behavior of the potential is han-
dled. Similar results were obtained with other systems and a variety of NN
forces, and the accuracy of the EAA was found to be in all cases within
0.5Ä1.7%. These differences can be even reduced further by using the uncou-
pled adiabatic approximation. In short, the adiabatic approximations are more
than sufˇciently good to describe unequal mass systems, the inaccuracies be-
ing much smaller than the uncertainties in the input potentials for the various
pairs.

The EAA results for spin-dependent interactions for the incremental bind-
ing energies ΔBΛΛ for 3H are also in overall good agreement with those of
Filikin et al. [13], and Nemura et al. [7]. The corresponding effective eigen-
potential serves as a check of our results and numerics as they are expected
to go asymptotically to the binding energies of the various 2+ 1 channels.
This has been demonstrated in Fig. 1 where we recovered the Λα binding
energies.

Finally, we stress that the formalism can be extended to include more realistic
forces that include tensor and spin-orbit components. This task, however, is
beyond the scope of the present work.
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Appendix A
JACOBI AND HYPERSPHERICAL COORDINATES

Let us deˇne ˇrst the following chain of Jacobi coordinates for a system of
A = N + 1 particles with masses mi:

ξi = ai

(
xi+1 −

1
Mi

i∑
j=1

mjxj

)
, i = 1, N (A.1)

with

ai =
[
MT

2A

Mi+1

Mimi+1

]1/2

, Mi =
i∑

j=1

mj , (A.2)

MT =
N+1∑
j=1

mj, X =
1

MT

N+1∑
j=1

mjxj , (A.3)

where mi is the mass of the particle i; MT is the total mass, and X is the
center of mass. The diagrammatic representation of these Jacobi coordinates
is shown in Fig. 2. We may rewrite the system (A.2) in a compact form as
follows:

ξ̃i =
N+1∑
j=1

Aijxj , (A.4)

Fig. 2. Diagrammatic representation of the Jacobi coordinates



1458 SOFIANOS S.A., RAMPHO G. J., ADAM R. M.

where we introduced the vector ξ̃ ≡ (ζ, X), ζi = ξi/ai, and

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0

−m1

M2
−m2

M2
1 · · · 0

−m1

M3
−m2

M3
−m3

M3
· · · 0

...
...

...
. . .

...

− m1

MN
− m2

MN
− m3

MN
· · · 1

m1

MA

m2

MA

m3

MA
· · · mA

MA

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.5)

From the matrix (A.5) one can extract the position of each particle, i.e.,

x = A
−1ξ̃

with

A
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−m2

M2
−m3

M3
−m4

M4
· · · −mN

MN
1

M1

M2
−m3

M3
−m4

M4
· · · −mN

MN
1

0
M2

M3
−m4

M4
· · · −mN

MN
1

...
...

...
. . .

...

0 0 0 · · · MN−1

MN
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.6)

Another useful system of coordinates is that of Zernike and Brinkman (ZB) [29]
in which one deˇnes

ξ1 = r cosϕ1,
ξ2 = r sin ϕ1 cosϕ2

...
ξj = r sin ϕ1 · · · sin ϕj−1 cosϕj ,
...
ξN−1 = r sin ϕ1 · · · sinϕN−2 cosϕN−1,
ξN = r sin ϕ1 · · · sin ϕN−1,

(A.7)

where we choose cosϕN = 0
In the ZernikeÄBrinkman system of coordinates, the Ω coordinates are sep-

arated into two parts: ˇrst, the z = cos 2ϕ, (ϕ = ϕ1), and ω = ω1, the angular
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coordinates of ξ1; second, the ΩN−1 for the other hyperspherical coordinates
(ϕi, ωi), i > 1, where ωi are the angular coordinates of ξi. Let dΩN−1 be the
surface element of the unit hypersphere r = 1 in the (D − 3)-dimensional space
spanned by the Jacobi coordinates ξi, i > 1. The volume element is then given by

d3Nξ = rD−1 dr dΩ (A.8)

with

dΩ = (sin ϕ)D−4 cos2 ϕdϕdω dΩN−1 =

=
1

2D/2
(1 − z)(D−5)/2(1 + z)1/2 dz dω dΩN−1 = W (z) dz dω dΩN−1, (A.9)

where we let

cos ϕ =
r12

r
=

ξ

r
, z = cos 2ϕ = 2

r2
12

r2
− 1.

The W (z) is known as ®weight function¯.

Appendix B

KINEMATIC ROTATION VECTOR

In expanding the wave function in terms of HPs and projecting with 〈ri j |,
one requires the extraction of matrix elements related to projection on (kl) pairs
in the D-dimensional space. This can be achieved by using the kinematic rotation
vector for the ZB coordinates which is deˇned in terms of a set of N parameters
ϕ1, ϕ2, . . . , ϕN of Eq. (A.7), according to

v(ϕ) = cos ϕ1 ζ1 + sin ϕ1 cos ϕ2 ζ2 + . . .

+ sin ϕ1 · · · sin ϕi−1 cos ϕi ζi + . . . + sin ϕ1 · · · sin ϕN−1 ζN , (B.1)

where we choose ϕN = 0. This vector represents a rotation in the D = 3N
dimensional space.

Let Ξ be any linear combination of Jacobi coordinates

Ξ =
N∑

i=1

ciξi = C

N∑
i=1

ci

C
ξi, (B.2)

where C2 =
N∑
1

c2
i . The angles between the vector Ξ and the ξn, n = 1, . . . , N

vectors, as deˇned by (3) in which the ˇrst pair is chosen to be the ij pair, are
then extracted by comparing the coefˇcients of (B.2) and (B.1) starting from

cos ϕΞ
1 =

a1

C
.
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Let us demonstrate the procedure for the three- and four-body cases. For the
three-body system, one always has connected pairs, i.e., any two pairs always
have a common index as, for example, the (1,2) and (2,3) pairs. In the four-body
case, however, one may also have the so-called disconnected pairs such as the
(1,2) and (3,4) pairs.

From the above matrices, (A.5) and (A.6), we have for three particles

x1 = −m2

M2

1
a1

ξ1 −
m3

M3

1
a2

ξ2,

x2 =
M1

M2

1
a1

ξ1 −
m3

M3

1
a2

ξ2,

x3 =
M2

M3

1
a2

ξ2.

Thus

x2 − x1 = a1ξ1,

x3 − x2 = −M1

M2
a1ξ1 + a2ξ2, (B.3)

x3 − x1 = −m2

M2
a1ξ1 + a2ξ2

with

a1 =
[
μ

M12

m1m2

]1/2

, a2 =
[
μ

M3

M12m3

]1/2

(B.4)

and similarly for the case where the ˇrst pair is chosen to be the (23) or the (31)

b1 =
[
μ

M23

m2m3

]1/2

, b2 =
[
μ

M3

M23m1

]1/2

, (B.5)

c1 =
[
μ

M13

m1m3

]1/2

, c2 =
[
μ

M3

M13m2

]1/2

(B.6)

with μ = MT /2A and Mkl = mk + ml.
For ξ23

1 (the superscript denotes explicitly the ˇrst pair) we have

ξ23
1 = −a1

b1

m1

M2
ξ1 +

a2

b1
ξ2,

or using the normalization C,

C2 =
a2
1

b2
1

m2
1

M2
2

+
a2
2

b2
1

,
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we obtain

ξ23
1 = [1 + ν]−1/2

ξ1 + [1 + 1/ν]−1/2
ξ2, (B.7)

where

ν =
M2

2

m2
1

a2
2

a2
1

=
m2M3

m1m3
,

therefore,

cos ϕ23
1 =

[
1 +

m2M3

m1m3

]−1/2

. (B.8)

Similarly for the (31) we have

cos ϕ31
1 =

[
1 +

m3M1

m2m1

]−1/2

. (B.9)

Thus we have the relations

cos 2ϕ23
1 = 2 cos2 ϕ23

1 − 1 =
m1m3 − m2M3

m1m3 + m2M3
, (B.10)

cos 2ϕ31
1 = 2 cos2 ϕ31

1 − 1 =
m2m3 − m1M3

m2m3 + m1M3
. (B.11)

Let us consider the four-body case in which

x1 = −m2

M2
a1ξ1 −

m3

M3
a2ξ2 −

m4

M4
a3ξ3,

x2 =
M1

M2
a1ξ1 −

m3

M3
a2ξ2 −

m4

M4
a3ξ3,

x3 =
M2

M3
a2ξ2 −

m4

M4
a2ξ3,

x4 =
M3

M4
a3ξ3,

where a1 and a2 are the same as in the three-body case and

a3 =
[
μ

M4

M13m4

]1/2

.
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Then,

X21 = a1 ξ1,

X23 = −M1

M2
a1ξ1 + a2ξ2,

X31 = −m2

M2
a1ξ1 + a2ξ2,

X41 =
m2

M2
a1ξ1 +

m3

M3
a2ξ2 + a3ξ3,

X42 =
m1

M2
a1ξ1 +

m3

M3
a2ξ2 + a3ξ3,

X43 = −M2

M3
a2ξ2 + a3ξ3,

where we use the abbreviation X21 = x2 − x1, etc. For the connected pairs
(21), (32), and (31) we obtain the same results as in the three-body case. Let us
consider the connected pair (41). We have

X41 =
m2

M2
a1ξ1 +

m3

M3
a2ξ2 + a3ξ3

from which

cosϕ41
1 =

[
1 +
(

m3M12a1

m2M2
3 a2

)2

+
(

M12a1

m2a3

)2
]−1/2

.

After some straightforward algebra we obtain

cosϕ41
1 =

m2m4 − m1(m1 + m2 + m4)
m2m4 + m1(m1 + m2 + m4)

. (B.12)

Similar results are obtained for the (42) pair. For the disconnected pairs we have
the term 0 ξ1 which gives cos ϕdisc

1 = 0. We may summarize the above, for the
general case A � 4, as follows:

cos 2ϕkl
ij =

⎧⎪⎪⎨⎪⎪⎩
+1 if (kl) = (ij);
mimk − mj(mi + mj + mk)
mimk + mj(mi + mj + mk)

for connected pairs;

−1 for disconnected pairs.

(B.13)

We remind here that the above result is for the reference pair (ij) for which
Xij = ai(xj − xi).
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Appendix C

EXPANSIONS

The Faddeev components can be expanded either in terms of Hyperspherical
Harmonics (HH) or Potential Harmonics (PH). We present here, brie	y, these
expansions.

C.1. Expansion in Hyperspherical Harmonics.Harmonic Polynomials (HP)
H[L](x), where x ≡ x1, x2, . . . , xA is a set of A = N + 1 linear coordinates, are
homogeneous polynomials satisfying the Laplace equation(

A∑
i=1

∂2

∂x2
i

)
H[L](x) ≡ ∇2H[L](x) = 0. (C.1)

The index [L] denotes a set of 3A − 1 quantum numbers including the degree
L characterizing the polynomial. The Hyperspherical Harmonic (HH) Y[L](Ω),
where Ω is the set of N spherical coordinates, is then deˇned via

H[L](x) = rLY[L](Ω), (C.2)

where r is the hyperradius, r2 =
A∑

i=1

x2
i . The relation (C.2) implies that the HH

are HP on the unit hypersphere r = 1 satisfying the eigenequation[
L̂2(Ω) + L(L + D − 2)

]
Y[L](Ω) = 0 (C.3)

and are normalized according to∫
Y ∗

[L](Ω)Y[L′](Ω) dΩ = δ[L],[L′]. (C.4)

The L̂2(Ω) is the angular part of the Laplace operator which in polar coordinates
(r, Ω) is given by

∇2 =
1

rD−1

∂

∂r
rD−1 ∂

∂r
+

L̂2(Ω)
r2

. (C.5)

L̂(Ω) is known as the grand orbital (or grand angular momentum) operator and
is given by

L̂2(Ω) =
4

W (z)
∂

∂z
(1 − z2)W (z)

∂

∂z
+ 2

�̂2(ωij)
1 + z

+ 2
L̂2(ΩN−1)

1 − z
, (C.6)

�̂(ωij) being the angular momentum for the pair (ij). In the above, we used
the hyperspherical coordinates consisting of the hyperradius r and the hyper-
angle Ω with

(r, Ω) ≡ (r, ωij ; ΩN−1), ωij = (θ, φ), cos φ = rij/r,

z = 2(rij/r)2 − 1 = cos 2φ, rij = r
√

(1 + z)/2.
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Note that the subscripts are omitted from θ, φ, and z when it is clear that they
are referred to (ij) pair.

Any function f(x) can be expanded in term of HH. As an example, consider
the Schréodinger equation for A particles

[T − V (x)]ψ(x) = Eψ(x). (C.7)

The wave function ψ(x) can be expanded as

ψ(x) =
∞∑

[L]=0

r−(D−1)/2u[L](r)Y[L](Ω). (C.8)

Such a choice results in a system of K coupled differential equations (we use
�2/2m = 1, L = L + (D − 3)/2),[

− d2

dr2
+

L(L + 1)
r2

− E

]
u[L](r) =

∑
[L′]

∫
dΩ〈Y ∗

[L]|V (x)|Y[L′]〉(Ω)uL′(r) =

=
∑
[L′]

V[L],[L′](r)uL′(r), (C.9)

where V[L],[L′](r) is known as ®potential matrix¯ [18].
This approach, albeit straightforward, is not practical for numerical calcula-

tions because of the tremendous degeneracy of the HH basis for a given ground
orbital L which prevents one to obtain converged solutions. Furthermore, the
calculations are cumbersome as one has to solve a huge number of differential
equations. Moreover, the convergence could be slow especially when hard core
potentials are employed or the number of particles considered is large.

C.2. Expansion in Potential Harmonics. Instead of HH expansion one may
use an expansion in terms of the more efˇcient potential harmonics (PH) [18,28]
P�,m

2K+�(Ωij) which form a complete basis for continuous functions depending
only on the relative coordinate rij ≡ ξ1. To describe it we recall ˇrst the A-body
Faddeev-type equation

(T − E)Ψij(x) = −V (rij)
∑
kl

Ψkl(x). (C.10)

We seek solutions which are invariant under rotation in the (D − 3)-dimensional
space and spanned by the N − 1 vectors, ξ2, ξ3, . . . , ξN . For these states one
has [28]

L̂2(ΩN−1)Ψij(x) = 0. (C.11)

The P�,m
2K+�(Ωij) are then deˇned as the eigenfunctions of L̂2(Ω) when

L2(ΩN−1) = 0 and they fulˇll the eigenequation[
L̂2(Ω) + L(L + D − 2)

]
P�,m

2K+�(Ωij) = 0, L = 2K + �. (C.12)
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Note that L2(Ω) and L2(ΩN−1) correspond to the spaces D = 3(A − 1) = 3N
and D = 3(A − 2) = 3(N − 1), respectively. For systems in which the pair (ij)
is in � state, while the other pairs are in an S state, these polynomials are given
by [18],

P�,m
2K+�(Ωij) = NK,�Y�m(ωij)

(rij

r

)�

Pα,β+�
K

(
2
r2
ij

r2
− 1

)
, (C.13)

where α = (D − 5)/2, β = 1/2, D = 3(A − 1), Y�m(ωij) is the spherical

harmonic; Pα,β+�
K (z) is a Jacobi polynomial, while NK,� is a normalization

constant which can be obtained from∫
(r=1)

P�,m∗
2K+�′(Ωij)P�′,m′

2K′+�′(Ωij) dΩ = δKK′ δ��′ δmm′ . (C.14)

The relation (C.11) implies that Ψij(x) must be a function of the collective
variable r and rij only, i.e.,

Ψij(x) ≡ F (rij , r). (C.15)

When the total angular momentum � is preserved we may, as usual, write

F (rij , r) = Y�m(ωij)F �(rij , r). (C.16)

Thus, expanding F �(rij , r) in terms of the complete polynomial basis

NK,�(rij/r)�/2P
α,1/2+�
K (z) we obtain, in terms of the HP,

F (rij , r) =
∑
K

P�,m
2K+�(Ωij)U �

K(r), (C.17)

where

U �
K(r) =

∫
P�,m

2K+�(Ωij)F (rij , r) dΩ. (C.18)

Equation (C.17) leads to coupled differential equations for U �
K(r) [28] and one

again faces similar problems to those mentioned in the expansion in terms of HH.
However, we may transform the coupled differential equations into integro-

differential equations by writing for the projection with 〈rij |

〈rij |Fkl〉 =
∫
〈rij |rkl〉F (rkl, r) dΩ =

=
∑
K,K′

〈rij , K, �|P�,m∗
2K+�(Ωij)|rkl, K

′.�〉
∫
P�,m

2K′+�(Ωkl)P�,m∗
2K′+�(Ωkl) dΩU �

K′(r)=

=
∑
K

〈rij , K, �|rkl, K, �〉P�,m∗
2K+�(Ωij)

∫
P�,m∗

2K+�(Ωkl)F �(rkl, r) dΩ.
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An expression for the overlap integral 〈rij , K, �|rkl, K.�〉 for equal mass particles
has been derived by [18,26] with the help of the kinematical rotation vector. For
unequal mass it is given by [16],

〈rij , K, �|rkl, K.�〉 = 〈P�,m
2K+�(Ωij |P�,m

2K+�(Ωkl)〉 =

= cos φ�
ij

Pα,β+�
K (cos 2ϕkl

ij )

Pα,β+�
K (1)

, (C.19)

where cos 2ϕkl
ij is given by (10).

The integrodifferential equation for the Faddeev amplitudes for the channel c,
are obtained by setting P �,c(z, r) = r(D−1)/2F �,c(rij , r)

�2

m

[
− ∂2

∂r2
+

L�(L� + 1)
r2

−

− 4
r2

1
W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z
+ 2

�(� + 1)
1 + z

− E

]
P �,c(z, r) =

= −V c(rij)
∑

c

∑
kl∈c

∫
f c(z, z′; cos 2φkl

ij )P
�,c(z′, r) dz′, (C.20)

where

f c(z, z′; cos 2φkl
ij ) = (1 + z)�/2 ×

×
∑
K

Pα,β+�
K (cos 2φkl

ij )

Pα,β+�
K (1)hα,β+�

K

(1 + z′)�/2
Pα,β+�

K (z)Pα,β+�
K (z′)W (z′) (C.21)

with L� = �+(D−3)/2. The function hα,β+�
K is introduced for the normalization

constant of the Jacobi polynomials and is given by

hα,β+�
K =

+1∫
−1

[
Pα,β+�

K (z)
]2

(1 + z)�W (z) dz. (C.22)

Appendix D
THREE-BODY SPIN STATES

The unequal mass spinology is the same as for nucleons and we recall it here
to ˇx our notation used to describe the expansion of wave function and obtain the
relevant projections in an easy way. It is customary to use the ClebschÄGordan
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(CG) coefˇcients to construct ˇrst the two-body states

|ŝ1ŝ2; S12mS12〉 =
∑

m1m2

C
m1,m2,mS12
s1,s2,S12

|s1m1〉|s2m2〉, (D.1)

where C
m1, m2, mS12
s1, s2, S12

is the CG coefˇcient (we use the notation of [41]). For
S12 = 0 we have the singlet and for S12 = 1 the triplet states. The three-body
spin states (σ̂n = ŝ3 + Ŝ12) are given by

|σn〉 =
∑

mSn m3

∑
m1 m2

Cm1,m2,mn

s1, s2, Sn
Cmn,m3,mσ

Sn, s3, σ |s1m1〉|s2m2〉|s3m3〉, (D.2)

where the states |σn〉 are characterized by the two-body quantum number S12 =
Sn and the three-body total spin |σn〉 and mσ. The singlet states Sn = 0 give rise
to two-body antisymmetric spin states (with respect to the exchange of particles
(12)) and three-body mixed antisymmetric spin states. Similarly the triplet Sn = 1
states give rise to two-body symmetric states and three-body mixed-symmetric
states. The above corresponds to the enumeration (12,3). The states corresponding
to the enumerations ((31,2) and (23,1) can be obtained using 6j symbols and in
the case of four particles, 9j symbols.

The above method, albeit straightforward, is not practical. Instead, one may
use Young diagrams and symmetrizers [42] to construct the relevant symmetries.

We construct ˇrst symmetries for the mσ = 1/2 states. For this we use the
notation A12 ≡ α1α2β3, where α1 is simply the state |s1ms1〉 = |1/2, +1/2〉 ≡
|+〉 states, etc., with AijAij = 1 and AijAkl = 0.

The mixed symmetric |σij〉s and mixed antisymmetric |σij〉a ≡ are easily
obtained from the Young tableaux,

|σ12; [21]〉s ≡
∣∣∣∣σ mσ,

1 2

3

〉s

=
1√
6
(2A12 − A31 − A23), (D.3)

|σ31; [21]〉s ≡
∣∣∣∣σ mσ,

3 1

2

〉s

=
1√
6
(2A31 − A12 − A23), (D.4)

|σ23; [21]〉s ≡
∣∣∣∣σ mσ,

2 3

1

〉s

=
1√
6
(2A23 − A12 − A31), (D.5)

|σ12; [21]〉a ≡
∣∣∣∣σ mσ,

1 3

2

〉a

=
1√
2
(A31 − A23), (D.6)

|σ31; [21]〉a ≡
∣∣∣∣σ mσ,

3 2

1

〉a

=
1√
2
(A23 − A12), (D.7)

|σ23; [21]〉a ≡
∣∣∣∣σ mσ,

2 1

3

〉a

=
1√
2
(A12 − A31). (D.8)
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We may express these relations in terms of the (12) pair:

|σ31〉a ≡ −1
2
|σ12〉a −

√
3

2
|σ12〉s, |σ31〉s ≡ −1

2
|σ12〉s +

√
3

2
|σ12〉a,

|σ23〉a ≡ −1
2
|σ12〉a +

√
3

2
|σ12〉s, |σ23〉s ≡ −1

2
|σ12〉s −

√
3

2
|σ12〉a.

(D.9)

The effects of σ1·σ2 on the |σmσ〉s and |σmσ〉a can be easily calculated using
the relations

σx|α〉 = |β〉, σx|β〉 = |α〉, (D.10)

σy|α〉 = i|β〉, σy |β〉 = −i|α〉, (D.11)

σz|α〉 = |α〉, σz |β〉 = −|β〉. (D.12)

We introduce now the singlet and triplet projection operators

P1+ =
1
2
(1 − P σ), P3+ =

1
2
(1 + P σ),

where P σ
12 is the spin-exchange operator

P σ
12 =

1
2
[1 + σ1·σ2 ], P σ

12|σ12〉s = |σ12〉s, P σ
12|σ12〉a = −|σ12〉a. (D.13)

These operators give

P1+|σ12〉a = 1|σ12〉a, P1+|σ12〉s = 0,

P3+|σ12〉a = 0, P3+|σ12〉s = 1|σ12〉s.
(D.14)

The above relations provide us with all projections needed.
For the spinÄisospin states we may construct the fully-symmetric |S〉, the

mixed-symmetric |S′
ij〉, the mixed-antisymmetric |A′

ij〉, and the antisymmetric
|A〉 state, by combining the various spin and isospin symmetries

|S〉 ≡ | ξ; στ ; [3] 〉S =
1√
2
(|σ〉s|τ〉s + |σ〉a|τ〉a), (D.15)

|S′
ij〉 ≡ |ξij ; στ ; [21] 〉S′

=
1√
2
(|σij〉s|τij〉s − |σij〉a|τij〉a), (D.16)

|A′
ij〉 ≡ |ξij ; στ ; [21] 〉A′

= − 1√
2
(|σij〉s|τij〉a + |σij〉a|τij〉s), (D.17)

|A〉 ≡ |ξ; στ ; [111] 〉A =
1√
2
(|σ〉s|τ〉a − |σ〉a|τ〉s). (D.18)
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Note that the |S〉 and |A〉 states are independent of the (ij). The |A′
31〉 and |A′

23〉
states can be expressed in terms of the (12) states using

|A′
31〉 = −1

2
|A′

12〉 +
√

3
2

|S′
12〉, (D.19)

|A′
23〉 = −1

2
|A′

12〉 −
√

3
2

|S′
12〉. (D.20)

The singlet and triplet projections are easily obtained (we omit, from now on the
(12) subscript):

P1+|S〉 =
1√
2
|σ〉a|τ〉a, P1+|S〉 =

1√
2
|σ〉s|τ〉s, (D.21)

P1+|S′〉 = − 1√
2
|σ〉a|τ〉a, P3+|S′〉 =

1√
2
|σ〉s|τ〉s, (D.22)

P1+|A′〉 = − 1√
2
|σ〉a|τ〉s, P3+|A′〉 = − 1√

2
|σ〉s|τ〉a, (D.23)

P1+|A〉 = − 1√
2
|σ〉a|τ〉s, P3+|A〉 =

1√
2
|σ〉s|τ〉a. (D.24)

Thus, we have the following projections:

〈A|P1+|A〉 = 〈A|P1+|A′〉 = 〈A|P3+|A〉 = −〈A|P3+|A′〉 =
1
2
, (D.25)

〈A′|P1+|A〉 = 〈A′|P1+|A′〉 = −〈A′|P3+|A〉 = 〈A′|P3+|A′〉 =
1
2
. (D.26)

Furthermore, using Eqs. (D.19) and (D.20) we obtain

〈A′|P1+|A′
31〉 = 〈A′|P1+|A′

23〉 = −1
4
, (D.27)

AlP1+|A′
31〉 = 〈A|P1+|A′

23〉 = −1
4
, (D.28)

〈A|P3+|A′
31〉 = 〈A|P3+|A′

23〉 =
1
4
. (D.29)

There are cases where only the spin states play a role. In such cases one has
to choose an ansatz for the wave function describing the various symmetries
similarly to (29).
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