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The two-variable Integrodifferential Equation Approach (IDEA) valid for A nucleons is general-
ized to describe quantum-mechanical systems consisting of A, unequal mass, particles. The method is
based on an expansion of the wave function in Faddeev amplitudes for the various particle pairs and a
subsequent expansion of them in terms of potential harmonics. Projecting the resulting Faddeev-type
equations on a specific two-body space and spin—isospin channel one obtains coupled, two-variable,
integrodifferential equations describing the system. These equations can be readily applied, for ex-
ample, to hypernuclear systems such as the double hypernucleus AAa which can be handled either
as a three- or as a six-body problem. We demonstrate our approach by applying it to various single
and double hypernuclei and compare the results to those obtained by other methods.

Ipubnuxexne uHTerponuddepeHIn IbHOIO yp BHEHHS ABYX MEPEMEHHBIX 115l A-HYKIOHOB 0600-
Il eTcsl C IeNbI0 OMKC HHUS KB HTOBO-MEX HHYECKHX CHCTEM, COCTOSIMX W3 A-4 CTHI] ¢ Hep BHBIMHU
M cc MH. MeTox OCHOB H H D 3/10XEHHUH BOJTHOBOH (PyHKUHM IO ¢ IIEEBCKUM MIUIMTYI M UL
P 3NIUYHBIX 11 P Y CTHUIl U MOCIEAYIOWIEM UX P 370XEHUM MO MOTEHIM JIbHBIM I' pMOHMK M. IIpoekTH-
pys HOJy4eHHbIE B Pe3ylIbT T Yp BHEHHS (b JIEEBCKOTO THUII H CIIeLH JIBHO BBIOpD HHOE JIByMEpHOE
HPOCTP HCTBO M CNUH-U30CHMHOBBIA K H JI, MOXKHO BBIIIHC Th CB3 HHblE MHTEIPOAU(QEpe It IbHble
yYp BHEHUS C JByMs NIEPEMEHHBIMU JUId ONUC HUS CUCTEMBl. YD BHEHUS MOXHO IPHMEHSATh, H IPUMED,
K TUNEPHYKJIOHHBIM CHCTEM M, T KHUM K K JBOHOe runepbsaapo AAa, KOTopoe MOXKHO P CCM TPUB Tb
K K Tpex- WIH LIeCTHY CTHYHYyIO 3 I 4y. B K 4ecTBe mpuMmep MHCIIONB30B HHS H ILIETO MPHOIMXe-
HMSl [IPHBOJMTCS €ro NpUMEHEHUe K P 37IMYHBIM OAMHOYHBIM M JBOWHBIM THIEPBSIP M, PE3YIbT Thl
Cp BHHB IOTCS C Ji HHBIMM, IOJTY4EHHBIMU JPYTUMU METOH MHU.

PACS: 11.80.Jy; 21.80.+a

INTRODUCTION

Multistrange hypernuclei consisting of various hyperons (A, =, ¥, etc.) have
been the subject of numerous experimental and theoretical works during the
last few decades (see, for example, [1-3] and references therein). To handle
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such systems, various approaches have been employed based on cluster models,
G-matrix theory, variational methods, and resonating group model, just to mention
a few of them. Thus, Yamada and Ikeda [4] used a microscopic cluster model to
study the LLi system; Hiyama et al. [5] used a variational method with Jacobi-
coordinate Gaussian-basis functions to study the A — X conversion in {He and
jl\H systems. Similar methods were used by Nemura and collaborators [6,7] to
investigate several light A and AA hypernuclei up to A = 6 and by Shoeb et al. [8]
who study s- and p-shell double hypernuclei variationally. G-matrix methods were
also employed [9].

The methods used, albeit powerful, are quite complicate in applications. A
more rigorous approach is the one based on Faddeev equations which, however,
are restricted to three- and four-body systems. We recall here the Faddeev
calculations for the A(X)NN system [10] and the extensive investigations carried
out by Filikin and co-workers for various hypernuclei (Anp, ?\Be, liC, }B\Be,
etc.) considered as three- and four-body systems [11-15]. Going beyond four-
particle systems via the Faddeev formalism is not at present feasible and therefore
one has to resort to clusters and the use of effective intercluster interactions. The
construction of these interactions is not an easy task at all due, mainly, to the
limited availability of the relevant spectrum and scattering data. Thus, it is not
unusual to have binding energies obtained with various potentials and differing
by a few MeV.

An alternative method, based on hyperspherical harmonics, was suggested
by Adam and Fiedeldey [16,17]. After expanding the wave function in Faddeev
amplitudes for the various particle pairs and a further expansion in potential
harmonics [18], one obtains two-variable integrodifferential equations for the
A-particle system by projecting the equations on a specific two-body space and
spin—isospin channel. For equal mass particles, the method has been successfully
applied in the past by Fabre and collaborators [19-25]. The IDEA, as is nowadays
known, includes the two-body correlations into account exactly while higher order
correlations are included via the hypercentral approximation quite satisfactorily
without increasing the complexity of the equations. Three-body forces can also
be included in a straightforward manner [19].

In the present work we describe how to generalize the IDEA method to
unequal masses systems with the inclusion of spin and isospin states. We demon-
strate the applicability of the method by considering various single and double
hypernuclei and compare the results with those obtained by other approaches.

In Sec.1 we describe the method and give the necessary details. In Sec.2
we present some applications and compare the results obtained with those of
other methods. Conclusions are drawn in Sec.3 while some technical details
concerning hyperspherical coordinates, the projection on the 7;; space, and a
practical approach to spinology, are given in the Appendices.
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1. THE INTEGRODIFFERENTIAL EQUATION APPROACH

We consider A = N + 1 particles of mass m;, i = 1,..., A, interacting
via pairwise forces. We assume that n, of them are particles of mass m,
forming the set a, n, of mass m; forming the set b, etc. Then one may have
N, = ng(n, — 1)/2 possible pairs in the set a forming the particle channel A,
Ny = ny(ny, — 1)/2 pairs in b forming B, N, = ngny, pairs formed by particles
from the set a and b forming the particle channel C' and so on. In the description
of the formalism we shall assume, for clarity, that we have two types of particles
and therefore a maximum of three types of pairs can be formed from them; the
description for the general case is straightforward.

In the Faddeev formalism, the total wave function for the system can be
expanded as

U(x) = i)+ vhE) +> 15, (x) =Y vi(x), ¢ =A4,B,C, (1)
ij kil mn ijECc’

where x is the coordinates vector; (ij), (kl), and (mn)) are the pairs within
each set (e.g., N;N;, ApA;, NyAy), and ¥f;, ¢ = A, B, C, are the Faddeev
components satisfying the equation

¢
iy

(T = By (x) = =Vis(riy) ) [Z Y (X)] : )

c’=A,B,C Lklec’
The corresponding chain of Jacobi coordinates & = {&1,&a,...,&N, X} are de-
fined in terms of position coordinates for the particles, x = {x1,X2,...,Xa},

2A Mymi,q,]"? 1 « .
g—[mTﬂ Xt =3 2 maXi |5 i= 1 N )
[3 zj:l

T
where m; is the mass of particle i, M; = Y m;; X is the center-of-mass
=1
coordinate, and M is the total mass. Further dej:tails on this system of coordinates
are given in Appendices A and B. The first coordinate £; will also be denoted by
r;; to indicate that the pair (¢j) is chosen as the reference particle pair.
For states which are invariant by rotation in the (D — 3)-dimensional space
and spanned by the N — 1 vectors, §2,83,...,&N, the amplitudes ¢, (x) can be
written as a function of the collective variable r and r;;

icj (X) = F’LC] (rija T), 1j € c. 4)
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Therefore,

(T — E)Ff(rij,r) = =V (rij) Z

c!

> Fg (v, ] : (5)

klec!

where the summation includes all pairs (kl) in each channel ¢'.
To extract the equation for the amplitude FC(I‘”, r) = Ff;(r;j,7) for the pair

(i7), we first expand it in potential harmonics 732 % 1+¢(Qij) (see Appendix C)

c,t
I'zj7 Z P2K+g zj U ( ) (6)
where the radial functions UIC(’Z(T) are given in terms F°(r;;,7) by

Ustr) / Poi o (Qif) FO* (xi,7) . (7

Then we project on the r;; space which requires the evaluation of (r;;|F°(ry)).
As is shown in Appendix C this is given by

(rij | F(rp)) = Z<P§}?L+4(COS 2¢z‘j)|77§1$e(005 2¢11)) glznié(gij)x
K

/ Pt () F(rpg,m) 2 (8)

An expression for matrix elements (PﬁKH(Cos 2¢z])|P2K+€ (cos 2¢y;)) for equal
mass particles has been derived in [18,26] with the help of the kinematical rotation
vector while for unequal mass particles in [16] the result being

P;’B-M(COS 290?})

PP (1)

(Pyit o (i [Py, /() = cos ¢ €

The angles gozl depend on whether the pair (ki) is identical to (ij), or joint, such
as (12) and (14), or disjoint, such as (12) and (45), and can be obtained by (see
Appendix B)

+1 if (k1) = (ij),

matt, =y (M 4 My £ ) e ang (i) are joint,  (10)
mimg + m; (mi +m; + mk)
-1 if (kl) and (ij) are disjoint.

cos 230?} =

The subscript ¢7 is to remind us that these angles are those corresponding to the
case where the first pair in the Jacobi coordinates corresponds to the (ij) pair.
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In our applications we consider £ = 0 only and therefore terms with this
index will be omitted from now on. The inclusion, however, of higher partial
waves under the assumption that the pair (ij) is in that state, is trivial and entails
the additional term, #2/(1+z) in the Hamiltonian (C.6) and the /-dependent terms
in Eq. (C.21).

Instead of the coordinates r;; and r one may introduce the (z, r) set where
zZ = cos 2¢1 = 27’%/7"2 — 1 and r. Then, letting

= . N PP (cos 20k
fz, 2 cos 2¢01) = W () Z PK’ﬁ(z)PK’ﬁ(z')W, (1)
K=0 w (DR
where the constant h%ﬁ is introduce to take care of the normalization,
+1
hel = [ W) [Pl (2)d 12
K (2) [P " (2)]” dz, (12)
21
and W (z) for the weight function
W(z)=(1-2)*1+2)" a=(D-5)/2 8=1/2, (13)
we obtain the projection functions for channel ¢
NP NP
fé(z, 7)) = Z Z fa(z, 25 cos 2¢))) = Z Fo(z,2) (14)
¢'=1 (kl)ec’ c'=1

with obvious notation. Finally, letting
F(rij,r) =~ P7V2Pe(zr), 2 =2(ry/r)? =1

we obtain the integrodifferential equation for the Faddeev-type components P¢(z, 1)

h2A . o
{WHT‘Z_E}P (z,7) ==V (E (1+z)/2> X
N, T1
x P"’(z,r)—kZ/FE/(Z,Z’)PCI(z’,r)dz’ . (15)

=174
where

2
Py < V58 VR B |
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L = (D —3)/2, and p° is the reduced mass for the channel c,
2Amim; 1M?
c 11ty ..
=|— , ij€ec 17
a {M(ml + m])} J (17

Equation (15) can be written in a more transparent matrix form (for simplicity
we assume that we have two channels only)

H..+VA-E 0 PAYN
0 H..,+VP-F pBE ]
VA 0 TAA  TAB pA
_—< 0 VB > FBA  FBB ( pB >7 (18)
where the operators Fe are such that

+1
Feo' pe = /fgl(z,z’)PCl(z’,r). (19)

-1

Note that in the diagonal operators Fy. the (kl) = (ij) elements should be
excluded as this term has been shifted to the left.

The reduced equation, Eq. (15), is S-projected and thus it excludes the effects
of higher partial waves. These effects can be included, albeit approximately and
in an average way, using the hypercentral potential for each channel. This is
defined by

Vi(r) = hiofmz) ve (ML W) dz, (20)

where the normalization factor hg is given by (12) for K = 0. Introducing V{(r)
into both sides of (15) we obtain the IDEA equation

G4 - E 0 PAY
0 GB -F PE )~

AVA 0 FAA FAB ) [ pA
—< 0 AVB > FBA  7BB (PB >7 (21)

. h%A
Cor =31

where now

He. Y ve VE (r)| + AV (22)
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with
r

AV =V© ( (1+ z)/2> —VE(r) (23)

c

and v, is the number of pairs in a given type c¢. Note that > v, = A(A —1)/2,
c
the total number of pairs.

From the above it is clear that the extension of the IDEA to unequal mass
particles results in no major complications and that the equations to be solved are
still quite simple and easy to apply to systems consisting of particles with unequal
masses. These equations are, however, coupled, and the number of channels in
the coupled system is equal to the number of different type of particle pairs
present, e.g., NN, NA, and AA.

The solution of Eq.(21) can be achieved either by solving it as a two-
dimensional integrodifferential equation, or via adiabatic approximations [19,23].
In the Extreme Adiabatic Approximation (EAA) we assume that the amplitude
can be written as a product

Pe(z,r) = Py(z, r)ux(r). 24)

This implies that the orbital motion is very rapid as compared to the radial motion
and contains most of the energy. Then Eq.(21) can be split into two equations,
namely,

DA 0 AVA 0 FAA FAB
o pB )T\ o avB )| B2 zBB

with
_h2A4 1 0

) 0
D =S Ewe e

1—22)W(z)=— + AV
(L= W ()5 +
from which we determine, for each r, the eigenpotential Uy (r) which is used to

evaluate the binding energy EXA4 from the second equation,

h2A >  L(L+1 o
AR ¥ + > vV )+ UA () [ua(r) = BFun(r). (26)

The EAA provides a lower bound and the accuracy achieved for nuclear systems
depends of the short range characteristics of the underlying nucleon—nucleon
forces. For soft potentials the accuracy is of the order of 0.2% and it can be
further improved by using the Uncoupled Adiabatic Approximation (UAA) [19].
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1.1. Spin-Dependent Forces. /.1.1. The System abc. Let us consider a system
of three particles a, b, and ¢ of unequal masses in which spin—isospin states of
specific symmetry are present for all three pairs. We denote the three interparticle
pairs by a = (12), 5 = (31), and v = (23) and assume that the total potential is
of the form

Ve(x) = S0 [V () P 4 V3 () PSF =
,Y/

+ VI () PLT VA () PET] = ZVW 27)

where 7/ runs over all pairs o, 3,7; and P"*, n = 1,3, are the spm—smglet and
spin—triplet projection operators, respectively. The total wave function may be
written as

Ur(x,o7) =Yo+ Y+ Y, (28)

where o (7) is the three-body spin (isospin), and
Y’Y’ = |A{y/>w$’ + |A>w$’ + |S;'>1/J$ + |S>¢$a Pyl = a7ﬂ777 (29)
where §’, S, A’, and A, denote the mixed symmetric, fully symmetric, mixed
antisymmetric, and fully antisymmetric states while |A’), |A"), |S’), and |S,/)
are the corresponding three-body spin—isospin states.
The Faddeev equations then read
(Hy—E)Yo=-Vo(Yo+Ys+Y,),
(H() — E)Y[g = —Vg(YO( =+ Yﬁ =+ Y’Y)’ (30)
(Ho = E)Yy = =V, (Yo + Y5 +Y,).
The projection on the r, space is independent of the spinology of the system.
Thus, we will concentrate on the spin—isospin projection.
Restricting ourselves, for simplicity, to even states only, i.e, to d)f, and wf/
states, ¥/ = «, 3, 7, and projecting with (A. |(r,| and (A|(r,| results in the
following system for the pair «,

(Ho— By == % Va[(ALIPRIAGS + (AL P2 Aws+
n=14,3+
(AL P ARV IS5+ (AL PELA S5+ (AL PELA IS, + (AL PRLAIE, | 31
and
(Ho— B)S == 3 Vo [(AIP2IAGS + (AP2AwS+
n=1+,3+
+ (AIPZLAGN IS, + (AIPEIAVS; + (AIPILADS, + (AIPEAS, | (32)



TWO-DIMENSIONAL INTEGRODIFFERENTIAL EQUATIONS 1449

with
+1

og = /f(z,z’; cos 200 () d2', n=8"orS. (33)
5

Note that, since we are dealing with a three-particle system, in (33) only one
term exists for each channel. Similar projections are valid for the Yg and Y,
components.

We may use now the recoupling relations (see Appendix D)

I ]' ! \/5 / I 1 ! \/g /
|A[3> = _5 |Aa> + 7 |Soz>ﬂ |A'y> = _5 |Aa> - 7 |Soz> (34)

and the projections
(A[PaTA) = (AIPF|AL) = (AGIPRTIAL) =
= (ARSI A) = ~(AIPBHAL) = (AL PRI = 5 69)
to obtain
(—Ho + BE)S =ViWs + N IS5+ MIS) + V5 (S + 155 + 13, 6)
(—Ho+ EYS =V (S + N IS5 + XTIS) + VWS + IS5+ 13,

where we let

VE(z, ) = Yo (/14 2)/ 2V3+T/““ U225

1, V3

and \* = —— £ ~=_ The other channels can be obtained by cyclic permutations.

Equations (36) are reduced to the SIDE equations by letting
val(zr) =r=P7V2RI (2, 1) (38)

to obtain

2A 4 , ,
{hM [ H, + H]+E}Pf (z,7) = VTS (2,r) + VIS (2,7), (39)

h?A 4 s e +1S
573 —H, + —H,| + E¢ P (z,7) =V I, (z,7) + VTII; (2,7).  (40)

The H, and H, are given by

0%  L(L+1) 1

H’":_W r2 H. =

o, )
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while

IS (z.r) = PS (2,7) + N IS5(2,7) + AT IS (2, 7), (42)
IS (z.0) = PS5 (2,7) + IS5(2, 1) + 15, (2, 7). (43)

For the (8 and ~ channels we have the terms

Hg/ (z.1) = P[‘.,SI (z,7) + /\_I‘g;(z, )+ X”Ig;(z, ), (44)

Hg(z.r) = Pg(z, r) 4+ Igv(z, r)+ I‘ga(z, T) (45)
and

IS (2r) = P (2,7) + AN IS (2,7) + AT IS, (2,7), (46)

Hf(z.r) = Pf(z, r)+ Ifa(z, r) 4+ Ifﬁ(z, ). (47)

The IDEA equations are easily obtained:

h?A 4 5
< |H ; Vo (1) + 5 H. | + B 6 Py (2,7) =
= (VT(z,7) = Vo) IS (2,7) + V7 (2,115 (2,7), (48)
n2a | g ] s
BYa _Hr"'z’y;%ﬂ’(r)‘f'r_gHz +EP(z,r) =

= V_(z,r)Hi/ (z,7) + (V+(z,r) - Vo,a) Hi(z,r) (49)
and similarly for the other two pair-channels 3 and ~.

For equal mass particles of mass m, the Faddeev components are the same
and the above system reduces to

2
{h— {—HT +3V(r) + %H] + E} PS (2r) =
m T

= (VH(z,7) = Vo) IS (2,7) + V™ (2,15 (2,7), (50)

{%2 |:—H7n +3W(r) + %HZ] + E} Ps(z,r) =
=V (2, (z,1) + (VT (2,7) = Vo) IS (2,7),  (51)

i.e., one recovers the three-nucleon equations [22].
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1.1.2. The System aab. Here we have again the o = (12), 8 = (31), and
~ = (23) channels but the latter two give the same projections. Assuming, as in
the abc case, that there are only singlet and triplet even states, the system (36) is
written as

(—Ho+ EYS = Vi [0 — 155] + Vi [0S + 2155,
(—Ho+ By = Vo [0 = 155] + Vi [v3 + 215,
(~Ho+ By = Vi [ + XI5, + M 15| + vy [vF + 15, + 18]
(~Ho + EYu§ =V |0F + 15, + XIS+ [uf + 15, + 18]

[ ]

(=Ho+ E)YS = VI [ + A L5 + M IS5 | + V7[5 + 5, + 5]

(—Ho + E)YS = V7 _wf' FATIS, + A*Ifg_ + VI [WS + IS, + I5,] .

Since 1 = ¢, by summing up the equations for the 5 and v channels we finally
obtain
s
U3
(—Ho+ E)1 L =
vs
Vs
% Vo —Vil.p 2V Log "
Vo V; Vo lag ZVJIaﬁ (?;
= [yt (L} ~f + 1; 147 v 52
R (—§IBa> Vslpa Vg (1 - 5156) Vo (Lt dap) ||| (52)
B

V!; <—%jga> Vg_jga V!; (1 — %fﬁg) Vg_(l + jgﬁ) wg

1.2. Presence of Spin States Only. It is clear from the above analysis that
the form of the final equations depends on the spin—isospin states which prescribe
the symmetries for the wave function components Y. as in Eq. (29). There are
cases where only the spin states play a role. One such system is the AA>He
system, where the isospin of A is ¢t = 0. Furthermore, the A—A interaction is 1.5,

and while that of A ®He consists of a singlet and triplet with m, = 1/2. Thus,
one may assume the ansatz

U= |oa) Ut +[of) Uit +[08) U5 + |00) WLt + |o3) W3, (53)

where the subscripts «, (3, and 7y stand for the pairs o = AjAq, = A4 3He, and
v = Ay®He. The states |0%) and |o3) are the mixed antisymmetric and mixed

symmetric three-body spin states (see Appendix D).
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Then, for the U1, we have the projection

(Ho — E)WL =
= Vot (ol Pyt [loa) WET + og)NE + o5 35 + oI + o3 13| =
1 V3 . 1 V3
— 1+ 1+ 1+ 3+ 1+ 3+
= Vot Wt - S Lh + I 51 - TIM] .

Note that the notation («, 3) designates the projection with the r, pair of the
component 3. This corresponds to the angle 2.
For the \Il;; projection we have

(Ho— E)¥ " =
=~V (oBIPE [loa) 3 + log) bt + op) it + o) [T + o) It | =
1 1 V3
_ 1+ 1+ 1+ 1+ 3+
=—Vs" |¥5 —glsa —5lay Tt TIBV] )
similarly, for \I/%Jr,
(Ho — E)Ut =
— V3 (o3P [mgug; + oL + [of) WA + o) I5F + |a§>fgﬂ -

_ _ 3+
= Vﬁ

porp Y3 - V3pe Ly
B 9 “Ba 9 By 9By |
For the -y channel we have

1+ _ vyt
(HO_E)\P'Y - _VV 9 v 9 B 9 "B

\Ill+ _ 1[14‘ _ 1[14’ _ \/§IJ+‘|
’Y )

3+ _ 3+
(HO_E)\I’V ==V 9 o 9 "B 978

\I/’?;/+_£Il++£_[1+_lf3+‘| .

From the choice (53) we must have \11[134' = Ut and \Ilg"r = —\I/f;*. We also
have V3 = V. Using these symmetries, we obtain the system

(Ho+ V™ = B)ULT = —VI* [—1it —v3I3t ],

1+ 1+ V3 3+
o So —1%31 : (54)

1
H. Vit EYplt Vit
(Ho +Vo7 = E)¥7 = =3V, 2

: 1
3+ 3+ _ 3+ 1+ 1+ 3+
(Ho + V) = E)U3" =~V [—\/ﬁfw +V3IS +Iw} .

In a similar way we may construct equations for any other system of up to four
particles.
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2. APPLICATIONS

The first question addressed was about the accuracy of the adiabatic approx-
imation in the case where the systems consist of unequal mass particles. For
this we choose, as a testing, the 3 He and the § \ He systems where exact calcula-
tions were performed by Adam and Fiedeldey [16] using a variety of potentials.
These systems are considered as five-body and six-body systems, respectively.
As input potentials we choose the Bassichis—Gal AN (c) potential [30]; for AA,
the Dalitz potential [31], while for NN we employed three interactions of dif-
ferent characteristics, namely, the soft core Volkov potential V7 [32], the hard
core S3 potential of Afnan and Tang [33], and the Malfliet Tjon MTV poten-
tial as modified by Zabolitzky [34]. The results obtained are given in Table 1.

Table 1. Results for the 3 He system and the .6 He system considered as five- and six-
body systems, respectively. The V) is that of Bassichis—Gal (c) [30] and the Vj, is
that of Dalitz [31]

2 He % AHe
EEAA Eexact [16] EEAA Eexact [16]

Volkov-7 [32] 32.16 31.60 42.52 4293
S3 [33] 31.36 30.85 42.13 41.99
MTYV [34] 34.55 33.61 46.16 44.36

VN

It is seen that the accuracy of the EAA is of the order of 1% for all potentials.
This difference can be attributed to the EAA but also to numerical inaccuracies
creeping in, especially for the MTV potential. This difference can be further
reduced by using the UAA [19]. Similar calculations can be performed for any
other system in which the particles interact via Wigner forces. Let us treat again
the § , He considered as a three-body AA — « system previously treated by Filikin
and Gal within the Faddeev formalism [12] as a three-body problem. We also
consider the double hypernucleus 1% Be assumed to be a four-body AAaa system.
The AA interaction is a singlet 'Sy potential of the form

3 2
Vaa(r) = Zvi exp (—%) , (55)

the parameters being adjusted so that (55) is the phase equivalent to the Nijmegen
hard core interactions [35]. For convenience we present these parameters in Ta-
ble 2. In the same table we give also the parameters of the A« and a« interactions
which have the same form as (55) but with two Gaussian terms [36]. Using these
interactions we obtained results in the uncoupled adiabatic approximation which
are given in Table 3.
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Table 2. Parameters of the AA, Ao, and a« interactions. The v parameter for the AA
potential assumes the values 0.4804, 0.5463, 0.4672, 1, and 1.2044 corresponding to the
NSC97b, NSC97e, NSC97f, ND, and ESC00 variant potentials

Potential | v, MeV 3, fm
AAT13] | 1 -21.49 1.342
2 | =379.1 x~ | 0.777
3 9324.0 0.350
Aa [36] | 1 450.4 1.25
2 -404.9 1.41
aa [37] | 1 120.0 1.53
2 -30.18 2.85

Table 3. UAA bound state results for the .6 He and }} Be considered as a three- (AAc)
and four-body (AAa«) systems

Potential faHe AABe
Euaa Faddeev [12]| Other Euaa Faddeev [12]| Other

ESC00 -10.83 -107  |-10.1[9]]  -16.94 -194  |-18.7[9]
ND -9.33 910 |-934 (51| -15.94 -177  |-17.15 [5]
NSC97b -7.35 -6.60 -14.28 -152
NSC97e -7.51 -6.82 -14.50 -154
NSCY7f -7.32 -14.30
Exp. -10.9+0.6 [38] -17.6 £0.4 [39]

-7.25+£0.19791% [40] -14.540.4 [13]

The results obtained using the various methods are, in overall, close to each
other. However, there is an apparent strong dependence on the potential and the
method used for calculations especially for the AA«aa system.

The effective adiabatic potentials, defined by

Vet (r) = Ucaa(r) + Z vV (r) + le)

r

for the NSC97b, ND, and ESCOO0 potentials and for the AA« system, are shown
in Fig. 1,a.

We note here that in the adiabatic approximation these potentials go asymptot-
ically to the corresponding binding energy of the Aa system, —3.106 MeV. This
asymptotic behavior is an indication that the extracted eigenpotential Ugaa (1)
is correct.

Let us consider next the system AAC, where C = SH with m, = —1/2 or
C = 3He with m, = 1/2. Here the 'Sy AA interaction is given by potential (55)
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10_ 2_ || T T T T T b i
L
S > O {
O O
= o0k = 2F EEEIII
z <
5 20¢ 5 —4r -
6L i
30k
8k i
_40 1 1 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8§ 10 12 14 0 2 4 6 8 10 12 14
r, fm r, fm

Fig. 1. Effective adiabatic potentials for the AA«a system: a) for the spin-independent
forces NSC97b, ND, and ESC00 Ac«; the Veg(r) tends to the Aa binding energy of
-3.106 MeV; b) for the ,3He system with spin-dependent forces. The first two eigen-
potentials converge, as expected, to the binding energies for the singlet (-2.06 MeV) and
triplet (-1.04 MeV) A« states

which is equivalent to the Nijmegen hard core interaction. The AC potential was
that of [13], namely:

VT (r) = 450.4 exp (—(r/1.2573)%) — 404.9 exp (—(r/1.41)?),
V3T (1) = 450.4 exp (—(r/1.2720)?) — 404.9 exp (—(r/1.41)?).

The singlet V1T (r) potential supports a bound state at —2.06 MeV; while the
triplet V3% (r), at —1.04 MeV.

Applying the EAA to the system (52) we obtain the incremental bin-
ding energies ABpp (in MeV) [13] for 3H shown in Table4. These are in
fair agreement with those of Filikin et al. [13] and of Nemura et al. [7]. The first
two eigenpotentials for the system are shown in Fig.1,b. As expected, they go
asymptotically to the binding energies for the singlet and triplet A°H states.

Table 4. Incremental binding energies ABaa (in MeV) for the 5y H in the extreme
adiabatic approximation. ABx is relative to the (2J + 1)-weighted average of the
4 4

AHe and jH

Potential | IDEA | Filikin et al. [13] | Nemura et al. [7]

ESC00 4.3938 3.46
ND 2.6432 2.11 2.8
NSC97e | 0.6628 0.37

NSC97b | 0.4953 0.11
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CONCLUSIONS

We presented a formalism based on expansion of the Faddeev amplitudes
for unequal mass particles in terms of the potential harmonics. Such an ex-
pansion implies that we choose states which are invariant by rotation in the
(D — 3)-dimensional space spanned by the N — 1 vectors, &5,&3,...,&N, Jacobi
coordinates. Therefore the Faddeev amplitudes v;;(x) in this space are functions
of the collective variable r and the vector & = r;; only, ¢(r;;, ). Expanding in
terms of PH and projecting on the same basis, one obtains differential equations
which, similarly to the HH expansion case, are not practical for numerical cal-
culations. If, however, the Faddeev-type equations for amplitudes ®°(r;;,r) are
first projected with (r;;| and then expanded, one obtains coupled integrodifferen-
tial equations, describing quantum mechanical systems consisting of A, unequal
mass, particles. These equations are easy to solve either exactly by treating
them as a two-variable system or via the more practical adiabatic approxima-
tion. The latter methods can provide us also with the scattering states and in
general one may extract the dynamics of the system in an easy and straightfor-
ward way.

We first tested the EAA by comparing the results obtain for the 3He sys-
tem and the ,%He system considered as five- and six-body systems, respec-
tively. For the three NN considered, the difference between the EAA and
the exact results is of the order of 1.5% for 3 He and about 1% for the dou-
ble hypernucleus ,GHe. The somewhat larger value with the MTV poten-
tial for the latter system is rather due to numerics as the exact method is
sensitive to the way the short range 1/r behavior of the potential is han-
dled. Similar results were obtained with other systems and a variety of NN
forces, and the accuracy of the EAA was found to be in all cases within
0.5-1.7%. These differences can be even reduced further by using the uncou-
pled adiabatic approximation. In short, the adiabatic approximations are more
than sufficiently good to describe unequal mass systems, the inaccuracies be-
ing much smaller than the uncertainties in the input potentials for the various
pairs.

The EAA results for spin-dependent interactions for the incremental bind-
ing energies ABxa for 3H are also in overall good agreement with those of
Filikin et al. [13], and Nemura et al. [7]. The corresponding effective eigen-
potential serves as a check of our results and numerics as they are expected
to go asymptotically to the binding energies of the various 241 channels.
This has been demonstrated in Fig.1 where we recovered the A« binding
energies.

Finally, we stress that the formalism can be extended to include more realistic
forces that include tensor and spin-orbit components. This task, however, is
beyond the scope of the present work.
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Appendix A
JACOBI AND HYPERSPHERICAL COORDINATES

Let us define first the following chain of Jacobi coordinates for a system of
A = N + 1 particles with masses m;:

1 o .

§i=a; <Xi+1 _M;mjxj>v 1=1,N (A1)
with

Mr M 1/2 :
== . , M;= i A2
N X (A2)

N1 TRRAR,

My = ;::1 m;, X= M—T ;::1 m;X;, (A.3)

where m; is the mass of the particle ¢; Mr is the total mass, and X is the
center of mass. The diagrammatic representation of these Jacobi coordinates
is shown in Fig.2. We may rewrite the system (A.2) in a compact form as

follows:
N+1

&= Aix;, (A4)
j=1

m

Fig. 2. Diagrammatic representation of the Jacobi coordinates
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where we introduced the vector & = (¢, X), ¢ =&i/a;, and

From the matrix (A.5) one can extract the position of each particle, i.e.,

with

ATl =

-1 1
mi mao
M Mo
mq mo
Ms Ms
mq mo
My My
mq mo
My My

X

_me My
M, Ms;
My _ms
Mo M3
0 My
M3
0 0

My

=A"1¢

0
0

0

1

ma
My |

(A.5)

(A.6)

Another useful system of coordinates is that of Zernike and Brinkman (ZB) [29]
in which one defines

& =rcosyr,

&9 = rsin ) cos s

& =rsing; ---sinp;_1 cos g,

Env—1 =rsing; ---sinpy_scospn_1,

Env =rsing; ---sinpy_1,

where we choose cospny =0
In the Zernike-Brinkman system of coordinates, the € coordinates are sep-
arated into two parts: first, the z = cos 2¢, (¢ = 1), and w = wy, the angular

(A7)
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coordinates of &1; second, the Qn_; for the other hyperspherical coordinates
(@i,wi), @ > 1, where w; are the angular coordinates of &. Let dQ2y_1 be the
surface element of the unit hypersphere » = 1 in the (D — 3)-dimensional space
spanned by the Jacobi coordinates &;, ¢ > 1. The volume element is then given by

d*Ne =P drd (A.8)
with

dQ = (sin )P~ cos® pdpdwdQUn_1 =

1
= 9D/2 (1- Z)(D_5)/2(1 + 2)1/2 dzdwdQn_1 =W(z)dzdwdQn_1, (A.9)
where we let
ri2 & r2
Cos p = — = —, Z:COSQSO:2L22—1,
T T r

The W (z) is known as «weight function».

Appendix B
KINEMATIC ROTATION VECTOR

In expanding the wave function in terms of HPs and projecting with (r; ;/,
one requires the extraction of matrix elements related to projection on (kl) pairs
in the D-dimensional space. This can be achieved by using the kinematic rotation
vector for the ZB coordinates which is defined in terms of a set of N parameters
V1, P2, ...,pn of Eq.(A.7), according to

v(p) = cos @1 (1 +sin @1 cos Yo (o + ...
+sin 1 -+ -sin ;1 cos @; ¢+ ... +sin 1 ---sin py_1Cn, (B.1)
where we choose ¢y = 0. This vector represents a rotation in the D = 3N

dimensional space.
Let = be any linear combination of Jacobi coordinates

N N
== 11— c — iy B.2
Doaki=C) 56 (B.2)
i=1 i=1
N
where C? = >~ ¢?. The angles between the vector = and the &,, n = 1,..., N
1

vectors, as defined by (3) in which the first pair is chosen to be the ¢j pair, are

then extracted by comparing the coefficients of (B.2) and (B.1) starting from
=_@
cos pT = —.

c
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Let us demonstrate the procedure for the three- and four-body cases. For the
three-body system, one always has connected pairs, i.e., any two pairs always
have a common index as, for example, the (1,2) and (2,3) pairs. In the four-body
case, however, one may also have the so-called disconnected pairs such as the
(1,2) and (3,4) pairs.

From the above matrices, (A.5) and (A.6), we have for three particles

1 MQ a1 M3 2,
Ml 1 ms 1
T Mya T My
My 1
" Mt
Thus
o — o1 = a1é1,
M
T3 — Xp = _ﬁlalfl + a2é2, (B.3)
2
m
T3 —T1 = —MQCH& + a2é2
2
with ; )
Mo 112 M. 12
m—@—ﬁﬂ ,@—@ 3] (B.4)
mime Mioms

and similarly for the case where the first pair is chosen to be the (23) or the (31)

Mon 1172 M. 12

mzp %],mzp 3], (B.5)
mams Myzmy
Moa 112 M. 12

o= |p— , o= | (B.6)
mims Mizmo

with g = M7 /2A and My = mg + my.
For £72 (the superscript denotes explicitly the first pair) we have

23 _ @1 a2
1 b1 Mgfl + bl §27

or using the normalization C,

2 2 2
c2=4m 9%
T p2 2 27
b2 M2 b2
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we obtain
B+ a1/ g, (B.7)
where
- M22 a% - m2M3
S omiad mymg’
therefore,
Ma171/2
cos 30%3 = [1 + 2 3} . (B.8)
mims
Similarly for the (31) we have
[ M2
cos pot = [1 4 s 1} . (B.9)
momq
Thus we have the relations
— mao M.
cos 2¢% = 2 cos? 23—1:w, B.10
71 71 mims + ma M3 ( )
— m1 M.
cos 23 =2cos? o} — 1 = Mats — = (B.11)

mams +mi Mz’
Let us consider the four-body case in which

ma My

1 = A a161 A a262 iR a3és,
M ms3 my
=35 a1y M, az82 L asés,

Mg ma

T3 = EGQEQ - MGQ&%
M3

Ty = MGBE&

where aq and a» are the same as in the three-body case and

o M, 1V
s MM13m4 .
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Then,
Xo1 = a1 &1,
Xog = —%alfl + a8,
X31 = _ﬁalgl + az82,
Xy = i, 26+ M — a6y + asés,
Xy = %m& + A —ax6s + azés,

Mo
Xuz = —Eaﬁz + asés,

where we use the abbreviation X5 = z9 — x1, etc. For the connected pairs
(21), (32), and (31) we obtain the same results as in the three-body case. Let us
consider the connected pair (41). We have

™Mo
Xi = —a1& + 2

YR M, —2 0565 + asés

from which

—1/2

cos pi! =

mgMigar \” Misay \*
14 (Zel) (e
m2M3Cl2 maas

After some straightforward algebra we obtain

cos il — M2 — mulmy + ms +ma) (B.12)
mamy 4+ my(my +ma +my)

Similar results are obtained for the (42) pair. For the disconnected pairs we have
the term 0&; which gives cos ¢ = 0. We may summarize the above, for the
general case A > 4, as follows:

+1 if (k) = (i5);
mymy —mj(m; +m; + my)
mymy + m;(m; +m; + my)
-1 for disconnected pairs.

cos 2gaff = for connected pairs; (B.13)

We remind here that the above result is for the reference pair (ij) for which
Xij = ai(xj — J?z)
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Appendix C
EXPANSIONS

The Faddeev components can be expanded either in terms of Hyperspherical
Harmonics (HH) or Potential Harmonics (PH). We present here, briefly, these
expansions.

C.1. Expansion in Hyperspherical Harmonics.Harmonic Polynomials (HP)
Hrj(x), where X = 21, 72,...,74 is a set of A= N + 1 linear coordinates, are
homogeneous polynomials satisfying the Laplace equation

A 82
( ) Hiz)(x) = VPHig)(x) = 0. (C.1)

2
b
i=1 9 g

The index [L] denotes a set of 34 — 1 quantum numbers including the degree
L characterizing the polynomial. The Hyperspherical Harmonic (HH) Y{z;(Q2),
where () is the set of NV spherical coordinates, is then defined via

Hizy(x) = Y1 (9), (C2)
A
where 7 is the hyperradius, 72 = Y z?. The relation (C.2) implies that the HH

i=1
are HP on the unit hypersphere r» = 1 satisfying the eigenequation

[EQ(Q) +L(IL+D-2)| (@) =0 (C.3)

and are normalized according to
/Y[*L] ()Y () d2 = 01,111 (C.4)

The f/Q(Q) is the angular part of the Laplace operator which in polar coordinates
(r, Q) is given by

“ 1oy o 72
ﬁ(Q) is known as the grand orbital (or grand angular momentum) operator and
is given by

72
) L 0 pa0 LAY ©s)

4 0

o P(wij)  L*Qn_1)
W(z) 0z 2

J— 2 [
(1 Z)W(Z)8z+21+z 1—2

LXQ) = (C.6)

é(wij) being the angular momentum for the pair (ij). In the above, we used
the hyperspherical coordinates consisting of the hyperradius r and the hyper-
angle € with

(r, Q) = (rwij; On-1), wij = (0,¢), cos ¢ =r;/r,

2=2(ri;/7)? =1 =cos 2¢, ri; =71/ (1+2)/2.
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Note that the subscripts are omitted from 6, ¢, and z when it is clear that they
are referred to (ij) pair.

Any function f(x) can be expanded in term of HH. As an example, consider
the Schrodinger equation for A particles

[T =V (@)lp(x) = Ey(z). (C.7)
The wave function ¢ (x) can be expanded as
b(x) = v Py ()Y (9). (C.8)
[L]=0

Such a choice results in a system of K coupled differential equations (we use
R?/2m =1, L= L+ (D —3)/2),

2
BB ) = Y [ a0 V)@ u) =

(L]

= Z Vi (r) ur(r), (C.9)
(L]

where Vi) z/(r) is known as «potential matrix» [18].

This approach, albeit straightforward, is not practical for numerical calcula-
tions because of the tremendous degeneracy of the HH basis for a given ground
orbital L which prevents one to obtain converged solutions. Furthermore, the
calculations are cumbersome as one has to solve a huge number of differential
equations. Moreover, the convergence could be slow especially when hard core
potentials are employed or the number of particles considered is large.

C.2. Expansion in Potential Harmonics. Instead of HH expansion one may
use an expansion in terms of the more efficient potential harmonics (PH) [18,28]
Pé}ﬁré(mj) which form a complete basis for continuous functions depending
only on the relative coordinate r;; = &;. To describe it we recall first the A-body
Faddeev-type equation

(T — E)Wij(x) = =V (rij) Y V(). (C.10)
Kl
We seek solutions which are invariant under rotation in the (D — 3)-dimensional
space and spanned by the N — 1 vectors, &2,&3,...,&n. For these states one
has [28] R
L*(Qn-1)¥,(x) = 0. (C.11)

The 775’1?4_4((2”) are then defined as the eigenfunctions of L2(2) when
L?(Qx_1) = 0 and they fulfill the eigenequation

12(Q) +L(L+D—2)} PLT (i) =0, L=2K+". (C.12)
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Note that L2(€2) and L?(Qy_1) correspond to the spaces D = 3(A — 1) = 3N
and D = 3(A — 2) = 3(N — 1), respectively. For systems in which the pair (i5)
is in ¢ state, while the other pairs are in an S state, these polynomials are given
by [18],

Tii l 'r.2,
P o(2g) = Nic.eYem(wiy) (L) PR+ <2r—g - 1) : (C.13)

where o = (D —5)/2, 8 = 1/2, D = 3(A — 1), Yon(wij;) is the spherical
harmonic; P;’ﬁ H(z) is a Jacobi polynomial, while Ng , is a normalization
constant which can be obtained from

Pé}’?_:g/ (Qz])Pg;’(r/n_;_g/(Q”) dQ = 5KK/ (Sggl 5mm/- (C14)
(r=1)

The relation (C.11) implies that ¥;;(x) must be a function of the collective
variable r and r;; only, i.e.,

U,i(x) = F(ry,r). (C.15)
When the total angular momentum / is preserved we may, as usual, write
F(rij,r) = ng(wij)Fe(rij,r). (C.16)

Thus, expanding Fé(rij77‘) in terms of the complete polynomial basis
Ni o(rij /r)Z/QP%l/QH(z) we obtain, in terms of the HP,

F(ry,r ZP2K+€ ij Wi (r), (C.17)

where

/ 7’2K+e )E' (i, 1) dS2. (C.18)

Equation (C.17) leads to coupled differential equations for U% (r) [28] and one
again faces similar problems to those mentioned in the expansion in terms of HH.

However, we may transform the coupled differential equations into integro-
differential equations by writing for the projection with (r;;|

(s | Fua) = / (x5 st F (i, 7) d2 =

=) (rij K Py () e, K €>/P2K’+£(le)PQIgiie(le)dQUf('(T):
K.K'

—Z le,K £|rkl;K é Q}z-n_:[ ij /Pgl?-:é le (I‘kl,T)dQ.
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An expression for the overlap integral (r;;, K, £|ry;, KX.€) for equal mass particles
has been derived by [18,26] with the help of the kinematical rotation vector. For
unequal mass it is given by [16],

(i K, lres, Ko0) = (P, (s Part ey () =
PIO‘(’BH(COS 290?})
Pt (1)

= cos ¢} . (C.19)

where cos 2@2—“} is given by (10).
The integrodifferential equation for the Faddeev amplitudes for the channel c,
are obtained by setting P*°(z,r) = r(P=D/2pbe(r,; r)

h? 0? Lo(Le+1)

m | or? r2
4 1 0 ) 9 e+1) lc _
:—Vc(rij)ZZ/fc(z,z';cos 2 f})Pe’C(z',r) dz', (C.20)
c klec
where

oz, 25 cos 208) = (14 2)"/ x

P}?’BH(COS 2 f]l)

X
; Pt (1) Rt

(14 2)7% PLPH () PR W () (C21)

with £, = ¢+ (D —3)/2. The function h‘;‘gﬁ ™ is introduced for the normalization
constant of the Jacobi polynomials and is given by

+1
mt = [ [P @ wie) s (€22)

-1

Appendix D
THREE-BODY SPIN STATES

The unequal mass spinology is the same as for nucleons and we recall it here
to fix our notation used to describe the expansion of wave function and obtain the
relevant projections in an easy way. It is customary to use the Clebsch—Gordan
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(CG) coefficients to construct first the two-body states

A A mi,ma,ms
|8182; 512m512> = Z 081}827;12 12 |81m1>|52m2>, (Dl)
mims
ml,mz,m512 . . .
where CSl S2. 510 is the CG coefficient (we use the notation of [41]). For

S12 = 0 we have the sipglet and for S1o = 1 the triplet states. The three-body
spin states (6" = §3 + S12) are given by

")y = > > Crmt O symy )| spma)|ssmas),  (D.2)

ms,, M3 M1 M2

where the states |0™) are characterized by the two-body quantum number Sq12 =
Sy, and the three-body total spin |0™) and m,. The singlet states S, = 0 give rise
to two-body antisymmetric spin states (with respect to the exchange of particles
(12)) and three-body mixed antisymmetric spin states. Similarly the triplet S, = 1
states give rise to two-body symmetric states and three-body mixed-symmetric
states. The above corresponds to the enumeration (12,3). The states corresponding
to the enumerations ((31,2) and (23,1) can be obtained using 6j symbols and in
the case of four particles, 9j symbols.

The above method, albeit straightforward, is not practical. Instead, one may
use Young diagrams and symmetrizers [42] to construct the relevant symmetries.

We construct first symmetries for the m, = 1/2 states. For this we use the
notation 415 = a3, where 7 is simply the state [s1ms,) = |1/2,+1/2) =
|[+) states, etc., with A;;A;; =1 and A;; Ag; = 0.

The mixed symmetric |o;;)° and mixed antisymmetric |o;;)® = are easily
obtained from the Young tableaux,

(o12: [21])° = |, > _ iG(QAm ~ A — Ag), D3)
lo31; [21])° = |om., >9 %(21431 — Ajp — Aga), (D.4)
|o2s; [21])° = |omy, >8 = %(21423 — Ao — As1), (D.5)
lo12; [21])" = |0 m,, >“ = %(Am — Az3), (D.6)
los; 21])* = |0 mo, >a = %(Az?, — A12), (D.7)
|o2s; [21])* = |0 mo, >“ = %(Au — Asz1). (D.8)
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We may express these relations in terms of the (12) pair:

1 V3 1 V3
log1)® = —=|o12)* — ——lo12)%, log1)® = —=|o12)® + ——]012)?,

2 2 2 2 (D.9)
o35 = 2o + Loy, sl = — oz — Lo}
023)" = 2012 2 012)7, 023)" = 2012 2 012)" -

The effects of o1-02 on the |om,)® and |om,)® can be easily calculated using
the relations

oxla) = |B),  0a|B) = |, (D.10)
Jy|a> = Z|6>a Uy|ﬂ> = —i|04>, (D.11)
02|a> = |a>7 Uz|ﬂ> = _|ﬂ> (D.12)

We introduce now the singlet and triplet projection operators
1+ 1 o 3+ 1 o
where P7, is the spin-exchange operator
1
Py = 5[1 +o1:02], Phloe)’ =lo12)%, Phloi)" = —|o2)¢.  (D.13)

These operators give

PHlon2)® = 1]o12)*, PHo12)* =0,
- - . s (D.14)
P |0.12>a = O7 P |0’12>‘ = 1|O‘12>‘ .
The above relations provide us with all projections needed.
For the spin—isospin states we may construct the fully-symmetric |S), the
mixed-symmetric |S;;), the mixed-antisymmetric |A;;), and the antisymmetric
|A) state, by combining the various spin and isospin symmetries

1
S) = &om;[3] )° = 75917 +10)* 7)), (D.15)
/ 1
IS) = [&ij30m;[21] ) = E(|Jij>8|7'ij>s = loi)*|7)), (D.16)
/ 1
|AL) = &5 075 [21] ) = —ﬁﬂﬂmsh‘j)a + loij)*17i)°) (D.17)

) = [& 07 [111] )4 = —(10)*[7)° — |0)°[7))- (D.18)

Sl



TWO-DIMENSIONAL INTEGRODIFFERENTIAL EQUATIONS 1469

Note that the |S) and |.A) states are independent of the (i5). The |A%,) and |.A53)
states can be expressed in terms of the (12) states using

/ ]‘ / \/g !

|Azq) = _§|~A12> + 5 |S12), (D.19)
/ 1 / '\/§ /

|Ays) = _§|-A12> Y |S12)- (D.20)

The singlet and triplet projections are easily obtained (we omit, from now on the
(12) subscript):

1

PUIS) = Jslo) i PHIS) = olole), (D21)
PUIS) = sl PO = 1)l (D.22)
PUIA) = —lo)lr)e P =l 02
PUIA) = =l ln)*, P = o) | (D24)

Thus, we have the following projections:
(A[PIFIA) = (AIPHFIA) = (AP A) = —(A[PPF|A) = % (D.25)
(ATPHHA) = (A[PHA) = —(A|PH]A) = (AP A) = % (D.26)

Furthermore, using Egs. (D.19) and (D.20) we obtain

) 1
(AP Az ) = (AP Agy) = =7, (D.27)
AP A) = (AP |4 = — 3, (D.28)
; , 1
(A[PPFIA5)) = (AIP?"|Ag;) = 7. (D.29)

There are cases where only the spin states play a role. In such cases one has
to choose an ansatz for the wave function describing the various symmetries
similarly to (29).
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