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We brie�y sketch a proof concerning the structure of the all-order ε expansions of generalized
hypergeometric functions with special sets of parameters.

PACS: 11.10.-z; 11.15.-q

1. Feynman diagrams are the main ingredients for evaluating S-matrix el-
ements within perturbative quantum ˇeld theory [1]. A powerful technique of
dealing with Feynman diagrams is based on their hypergeometric representations.
However, obtaining exact representations is not enough in practice; it is also
necessary to construct the analytical coefˇcients of the ε expansions within di-
mensional regularization in d = 4−2ε space-time dimensions. The ˇrst systematic
algorithm that is applicable to a large class of hypergeometric functions with inte-
gral values of parameters has recently been proposed [2], and its generalization to
the so-called zero-balance case has been elaborated [3]. The resulting expansions
are written in terms of Goncharov polylogarithms [4]. This approach allowed one
to make the remarkable observation that the intermediate ˇnite sums, the so-called
Z sums, generated by the ε-expansion procedure form a Hopf algebra. A similar
observation was also made by Kreimer [5] in the ultraviolet renormalization pro-
cedure in quantum ˇeld theory. However, in physical Feynman diagrams, many
other types of sums are generated, such as multiple (inverse) binomial sums [6,7],

Σ(k)
a1,...,ap;b1,...,bq ;c(z) =

=
∞∑

j=1

1(
2j
j

)k

zj

jc
Sa1(j − 1) · · ·Sap(j − 1)Sb1(2j − 1) · · ·Sbq (2j − 1), (1)

where Sa(n) =
n∑

j=1

1/ja is the harmonic sum and k = ±1. These sums do not

belong to the cases previously studied. It is, therefore, necessary to develop a
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new algorithm for the analytical evaluation of multiple sums of this type and their
multivariable generalizations. A few such approaches were considered (see, for
example, [7Ä9]), but a general solution does not yet exist. In the following, we
brie�y describe the approach developed in [8].

2. Let us consider the generalized hypergeometric function deˇned by

pFp−1(A;B; z) =
∞∑

j=0

Πp
i=1(Ai)j

Πp−1
k=1(Bk)j

zj

j!
, where (A)j is the Pochhammer symbol,

(A)j = Γ(A + j)/Γ(A). Any series of kind (1) can be viewed as a linear combi-
nation of derivatives of hypergeometric functions with respect to parameters, as
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∂

∂B

)βs

p+sFp−1+s (As;Bs; z)|As=ms;Bs=ns
, (2)

where ms and ns are sets of rational numbers and cs are rational functions.
The problem of analytically evaluating multiple series is reduced to the one of
analytically evaluating the coefˇcients of the Laurent expansions of Horn-type
hypergeometric functions with respect to their parameters.

The next step is to apply a differential-reduction algorithm [10] that allows
one to change the value of any parameter of any hypergeometric function by an
arbitrary integer, so that the following decomposition is valid [10,11]:

Rp+1pFp−1(A + m;B + k; z) =
p∑

k=1

Rk

(
z

d

dz

)k−1

pFp−1(A;B; z), (3)

where m, k, ek, and Ek are lists of integers and Rk are polynomials in the
parameters A, B, and z.

At this point, it is useful to introduce the polynomials P
(p)
j (r1, . . . , rp) de-

ˇned as

p∏
k=1

(z + rk) =
p∑

j=0

P
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P
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so that

P
(p)
0 (r) = 1, P

(p)
j (r) =

p∑
i1,...,ir=1

∏
i1<···<ij

ri1 · · · rij , j = 1, . . . , p. (5)
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For example, P
(p)
1 (r) =

p∑
j=1

rj and P
(p)
p (r) =

p∏
j=1

rj . These polynomials satisfy

the following relations:

P
(p+k)
p+k−j(r1, . . . , rp, q1, . . . , qk) =

=
k∑

n=0

P
(p)
p+1−j−n(r1, . . . , rp)P (p)

n (q1, . . . , qk), (6)

where j = 1, . . . , p. In particular, we have P
(p+1)
p+1−j(r, f) = P

(p)
p+1−j(r) +

fP
(p)
p−j(r).
Let us consider the ε expansion of a hypergeometric function with the fol-

lowing set of parameters: pFp−1 (I + aε, A + cε;K + bε, B + fε; z), where I
and K are integers and A, B, a, b, c, and f are arbitrary rational numbers.
In accordance with Eq. (3), this function can be written as a linear combination
of p − 1 differential operators acting on the hypergeometric function ω(z) with
the following set of parameters: ω(z) = pFp−1 (aε, A + cε;1 + bε, B + fε; z).
Starting from the differential equation for ω(z),

[
z (θ + A + cε)Πp−1

j=1(θ + ajε)−

−θ (θ + B − 1 + fε)Πp−2
k=1(θ + bkε)

]
ω(z) = 0, (7)

and writing its ε expansion as ω(z) = 1 +
∞∑

j=1

wk(z)εk, we obtain the following

system of differential equations for {wm(z)}:
[
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− 1
z
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AP
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z

P
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θp−1−kwm−k(z) + P (p)

p (a, c)wm−p(z), (8)

where θ = zd/dz. The ˇrst nonvanishing term corresponds to m = p if A = 0
and m = p − 1 otherwise. In both cases, Eq. (8) reduces to[

(1 − z)
d

dz
+

B − 1
z

− A

]
θp−1wp−1+δA,0(z) = (A + cδA,0)P

(p−1)
p−1 (a), (9)
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where δA,0 is equal to 1 if A = 0 and zero otherwise. To simplify Eq. (9), let us
redeˇne the higher derivatives of ω(z) as θp−1wk(z) → h(z)θp−1φk(z), where
φk(z) is a new function and

h(z) = (−1)Az1−B(z − 1)B−A−1, (10)

with A and B being arbitrary rational numbers. Then, Eq. (9) becomes

(−1)A−1z−B(z − 1)B−Aθpφp−1+δA,0 (z) = (A + cδA,0)P
(p−1)
p−1 (a). (11)

The solution of Eq. (11) can be written as a multiplied iterated integral,

φ
(p−1)
p−1+δA,0(z) ∼

z∫
0

dt1
t1

t1∫
0

dt2
t2

· · ·
tp−1∫
0

dtp
tp

tBp
(tp − 1)B−A

, (12)

where the constant part is omitted for simplicity. This solution can be written in
terms of hyperlogarithms deˇned as iterative integrals over rational one forms,

Ik(z; ak, ak−1, . . . , a1) =

z∫
0

dt

t − ak
Ik−1(t; ak−1, . . . , a1), (13)

where z is the argument, {ai} is the set of parameters, and k is the weight of
the hyperlogarithm. In this way, the solution in the form of Eq. (12) may be
expressed in terms of hyperlogarithms if a parametrization z → ξ(z) exists such
that the following two conditions are fulˇlled:

dz

(1 − z)h(z)
= Q(ξ)dξ,

dz

z
= R(ξ) dξ, (14)

where Q(ξ) and R(ξ) are rational functions of ξ. Using the parametrization
A = r/q and B = 1 − p/q, where p, r, and q are integers, the three most
important cases are: (i) A = 0, B = 1 − p/q, {[(z/(z − 1)]p/q}; (ii) A = r/q,
B = 1, {(1− z)−r/q}; (iii) B−A = k, {(1− z)k−1zp/q}, where k is integer and
the function h(z) is written out in braces. The new variables ξ for these cases
may be chosen as [3] (i) ξ = [z/(z − 1)]1/q; (ii) ξ = (1 − z)1/q; (iii) ξ = z1/q.
We point out that another parametrization exists for q = 2 [6, 7].

Remark A. It is easy to show that Eq. (14) is equivalent to the statement that
the hypergeometric function zpFp−1 (1 + A,1p−1; 1 + B,2p−2; z) is expressible
in terms of rational functions times hyperlogarithms.

In order to analyze the structure of the highest coefˇcients of the ε expan-
sions, let us consider the original function ω(z) and its ˇrst p − 1 derivatives
as independent functions, f (k) = (ω, θω, . . . , θp−1ω), k = 0, . . . , p − 1. Tak-
ing into account that each of the functions f (k) has an ε expansion of the
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form f (k)(z) =
∞∑

j=0

f
(k)
j (z)εj with the boundary conditions f

(0)
0 (z) = 1 and

f
(k)
j (0) = 0, j � 1, k = 1, . . . , p− 1 and redeˇning θp−1ωk(z) = h(z)φ(p−1)

j (z),
we convert Eq. (8) into a system of ˇrst-order differential equations,

h(z)(1 − z)
d

dz
φ(p−1)

m (z) = h(z)
[
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z
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1 (b, f)
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φ
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[
P
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j (a, c) − 1

z
P
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]
f

(p−j)
m−j (z)+

+ AP
(p−1)
p−1 (a)wm−p+1(z) +

p−2∑
k=1

[
AP

(p−1)
k (a) − (B − 1)

z
P

(p−2)
k (b)

]
×

× f
(p−1−k)
m−k (z) + P (p)

p (a, c)wm−p(z), (15)

θf (p−2)
m (z) = hφ(p−1)

m (z), θf (j−1)
m (z) = f (j)

m (z), j = 1, . . . , p − 2.

The solution of this system can again be presented as an iterated integral over a
rational one form, if two additional conditions are satisˇed:

dz

z

1
h(z)

= P1(ξ) dξ,
dz

z
h(z) = P2(ξ) dξ, (16)

where P1 and P2 are rational functions. As a consequence of the universality of
hyperlogarithms, any iterated integral over a rational function may be expressed
again in terms of hyperlogarithms. It is easy to show that the two equations
in Eq. (16) are not functionally independent. In fact, using the second equal-
ity in Eq. (14), we obtain R2(ξ) = P1(ξ)P2(ξ) and h(z) = R(ξ)/P1(ξ) =
P2(ξ)/R(ξ).

Remark B. In [3], the zero-balance case was analyzed via the algebra of
nested sums, and it was proven that the coefˇcients of the ε expansion are ex-
pressible in terms of hyperlogarithms of q-roots of unity with argument z1/q.
Also, the proposition was made that any hypergeometric function with one un-
balanced rational parameter is again expressible in terms of hyperlogarithms of
q-roots of unity with arguments [z/(z − 1)]1/q or (1 − z)1/q . But this state-
ment is in contradiction with the results of [7, 12], which were conˇrmed later
in [13].

Remark C. In [13], an ansatz for the coefˇcients of the ε expansions of 3F2

hypergeometric functions was presented, and it was shown that the ˇrst few terms
are compatible with the differential equations for the hypergeometric functions.
However, the proof of validity of this ansatz for an arbitrary order of ε was not
delivered.



ALL-ORDER ε EXPANSIONS OF HYPERGEOMETRIC FUNCTIONS 1759

CONCLUSIONS

The analytical structure of the coefˇcients of the all-order ε expansion of
the hypergeometric function pFp−1 (I + aε, A + cε;K + bε, B + fε; z), where I
and K are integers and A, B, a, b, c, and f are arbitrary rational numbers,
was analyzed. It was shown that, under the conditions of Eq. (14) and one of
those of Eq. (16), the coefˇcients are expressible in terms of hyperlogarithms
with arguments and parameters deˇned through three polynomials R, Q, and P1.
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