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THE GAUGE UNPARTICLES (®UNGLUONS¯)
G.A. Kozlov

Joint Institute for Nuclear Research, Dubna

A ˇeld model for a quark and an antiquark binding is described. Quarks interact via a gauge
unparticle (®ungluon¯). The model is formulated in terms of Lagrangian which features the source
ˇeld S(x) which becomes a local pseudo-Goldstone ˇeld of conformal symmetry Å the pseudodilaton
mode, and from which the gauge nonprimary unparticle ˇeld is derived by Bμ(x) ∼ ∂μS(x). Because
the conformal sector is strongly coupled, the mode S(x) may be one of new states accessible at high
energies. We have carried out an analysis of the important quantity that enters in the ®ungluon¯
exchange pattern Å the ®ungluon¯ propagator.

PACS: 11.10.Cd; 11.15.Ex

INTRODUCTION

It is evident that unparticle phenomenon [1] and its phenomenology (see, e.g.,
the recent papers in [2] and the references therein) have been widely overlooked
and discussed in the literature.

To develop a model for quark and an antiquark binding, we follow Georgi's
idea [1] that a nontrivial scale invariant sector of scale dimension d might manifest
itself at low energy as a nonintegral number d of massless unparticles. One of
the physical realization of unparticle imagination is to look at unparticle

Å as a limiting case in which the unparticle ˇelds and their mass spectra are
given in the tower of inˇnite number of particles [3],
and

Å as a ˇeld with continuously distributed mass [4].
We assume that the ˇelds of the hidden sector undergo dimensional trans-

mutation at scale Λ generating scale invariant unparticle ˇeld. It means that
Λ deˇnes a border energy scale where unparticle ˇeld(s) can interact with the
Standard Model (SM) ones.

It is worth recalling that the interaction of the hidden sector given by the
scale invariant unparticle operator OU with dimension d and the SM operator
OSM of dimension n is

(
Λ

MU

)dUV +n−4
OU OSM

Λd+n−4
, (1)
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where MU is the mass of messenger in the ultraviolet (UV) hidden sector of
dimension dUV possessing the infrared (IR) ˇxed point. If OU is a vector ˇeld
operator Oμ, it could couple to the matter ˇeld(s), and its exchange between
particles in the SM could lead to additional effect of interactions.

We investigate the effects on the conformal sector from the gauge sector, and
will show that this leads to surprising new bounds on unparticle physics. The
main attention is paid to the effective operator of the type (Â = γμAμ)

g� ψ̄(x) Ô(x)ψ(x)
Λd−1

, g� = g

(
Λ

MU

)dUV

, (2)

where g is dimensionless and ψ(x) being the prototype of the spin-1/2 spinor
(quark) ˇeld. We assume that Oμ(x) transforms like a vector operator under
the gauge transformations, and thus, the term with (2) gives an action which is
invariant under these transformations. The interaction given in (2) implies that the
unparticle is the messenger between massive spinor particles, and this exchange
creates a new force, which we call the ®ungluon¯ added to the standard gluon
force.

We do not consider the quantization of gauge unparticle ˇeld in the standard
conventional manner for the following reasons:

Å to be consistent with experiment where no such unparticle has been ob-
served;

Å to avoid the IR problems in perturbation theory.
We attribute no dynamical degrees of freedom to the gauge unparticle. In-

stead, we regard the unparticle ˇeld as the object of a direct interaction between
quark and antiquark. We shall investigate the effects of the scale invariant sec-
tor from the gauge ˇeld sector, and we show that this leads to new bounds on
unparticle physics.

The paper is organized as follows. In Sec. 1 we introduce the effective
Lagrangian of the model. The ®ungluon¯ propagator function in four-dimensional
space-time (4D) is given in Sec. 2. In the last section we conclude with some
remarks.

1. SCALE INVARIANCE AND (PSEUDO)DILATON MODE

We start by discussing a model of unparticle physics, which is different from
the previously suggested models. The gauge-invariant operator Qαβ(1, 2) for the
quark 1 and the antiquark 2 as 4 × 4 matrix in Dirac spinor indexes α and β is

Qαβ(1, 2) = − 1
N

ψ̄β(2)U(2, 1)ψα(1), (3)
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where the unparticle operator U(2, 1) is given by the unparticle vector ˇeld Bμ(x):

U(2, 1) = exp

⎧⎨
⎩−i g

1∫
0

ds Bμ(xs)
dxμ

s

ds

⎫⎬
⎭ . (4)

Here, the straight path integration is taken through xs = x1+sr, where r = x2−x1

is the relative distance between Fermi-particles (quark and antiquark).
With respect to the scale invariance, the Noether theorem tells about the

existence of the corresponding conserved dilatation current Jμ
dil, where ∂μJμ

dil =
θμ

μ being the energy-momentum tensor. In conformally invariant theories the
last expression is equal to zero, however, due to quantum effects, the conformal
invariance is broken [5]

θμ
μ =

∑
q:quarks

mqψ̄ψ +
β(g)
2 g

F aμνF a
μν . (5)

Here, the function β(g) = μ ∂g(μ)/(∂μ) governs the behaviour of the running
coupling g with the scale μ. In the case of SU(3), gauge theory coupled to nf

massless fermions in the fundamental representation [6]

β(g) =
(

β0
g3

16 π2
+ β1

g5

(16 π2)2

)
, (6)

where β0 = −[11− (2/3)nf], β1 = −[102− (10+8/3)nf]. If g is small enough
at high energy, it will increase as the renormalization scale μ decreases until the
ˇxed point β(g) = 0 is encountered at some g = g�. This is an IR ˇxed-point of
the renormalization group �ow. Hence, at E < ΛU < MU the effective theory
becomes scale-invariant.

It has been demonstrated [7] that the coupling of gluodynamics to the con-
formal background gravity, described by a single scalar ˇeld (dilaton), leads to
the fact that theory is conformally invariant in any dimension.

In the Lagrangian framework we introduce two vector ˇelds: Bμ(x) and
Cμ(x), of which only one Å an unparticle gauge (®ungluon¯) Bμ(x) ˇeld Å
will interact directly with the quark ˇeld ψ(x) with mass m (Cμ(x) being the
auxiliary ˇeld). The Lagrangian density is

L = −1
4
BμνBμν + ψ̄

(
i∂̂ − m − g�

Λd−1
B̂

)
ψ − α2

2Λd−1
BμνCμν−

− ξ
1

Λd−1
(∂μ Bμ) (∂νCν) − 1

2
μ2CμCμ +

m2
S

2

(
1

Λd−1
Bμ − ∂μS

)2

, (7)

where Bμν = ∂μBν − ∂νBμ, Cμν = ∂μCν − ∂νCμ; α is dimensionless; ξ is the
gauge parameter; μ is a dimensional coupling constant Å a mass parameter. The
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scalar ˇeld S(x) serves as the conformal compensator with mass mS . In real
world the scale invariance is lost, particles possess ˇnite mass and sizes. It is
therefore tempting to formulate an effective theory of broken scale invariance also
in terms of the corresponding pseudo-Goldstone boson of spontaneously broken
(approximate) scale invariance. For example, a light Higgs boson h itself can be
identiˇed with the pseudodilaton through the relation S =

√
hh+. Since the scale

transformation does not affect any quantum numbers, the corresponding particle
can be, e.g., a scalar glueball or, perhaps, a σ- or f0- mesons.

In this paper, we suppose that electroweak symmetry breaking is triggered by
a spontaneous breaking of scale symmetry (near conformal sector) at the energy
scale f � v [8, 9], v being the vacuum expectation value of the Higgs boson
in the SM. The spectrum of states at the electroweak (EW) scale ΛEW ∼ 4πv
contains a scalar particle (resonance), the pseudo-Goldstone boson (pseudodilaton)
of conformal symmetry breaking. This particle is associated with the EW singlet
scalar ˇeld S(x), the dilaton mode. The typical pattern is provided by new
strongly coupled, nearly conformal dynamics at a scale of Conformal Field Theory
(CFT) ΛCFT ∼ 4πf which then �ows into EW sector at ΛEW. The mass mS is
naturally light, mS ∼ γf , where γ is the parameter that controls deviations from
exact scale invariance. The dilaton becomes massless when conformal symmetry
is recovered. Hence, the light scalar resonance is a distinguishing feature of
nearly conformal dynamics.

The prospects for distinguishing the dilaton mode from a minimal Higgs
boson at the LHC and ILC are presented in [9].

2. ®UNGLUON¯ PROPAGATOR

From the physical point of view, observable quantities may be deˇned as
those that are invariant under the gauge transformations of the second kind

ψ → ψ exp (igλ), Bμ → Bμ + Λd−1∂μλ, Cμ → Cμ + ∂μλ, S → S + λ, (8)

and λ satisˇes ∂2λ = 0.
The equations of motion read

∇2Bμ −
(

1 − ξ

α

)
∂μ(∂ · B) =

μ2

α

1
Λ1−d

Cμ, (9)

∇2Cμ −
(

1 − ξ

α

)
∂μ(∂ · C) +

m2
S

α

(
1

Λd−1
Bμ − ∂μS

)
= J�

μ, (10)

Bμ = Λd−1 ∂μS (11)
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from which one can easily ˇnd the principal equations for ˇelds Bμ and S

(∇2)2Bμ −
(

1 − ξ2

α2

)
∇2∂μ(∂ · B) =

μ2

α

1
Λ1−d

J�
μ, (12)

(∇2)2S − μ2

ξ
(∂ · C) = 0, (13)

where the current J�
μ = α−1g� ψ̄γμψ − ∂ν Bνμ is conserved. Note that the ˇeld

Cμ does not commute with Bμ. If μ → 0, S(x) becomes the dipole pseudodilaton
ˇeld obeying the equation

(∇2)2S(x) = 0, ∇2 ≡ ∂2

∂x2
. (14)

Few words concerning the higher derivative scalar ˇeld theory. We have already
mentioned that on the classical level, the conformal symmetry is manifested by
the fact that the stress-energy tensor is traceless. On the other hand, at quantum
level the conformal symmetry is broken which gives rise to conformal (trace)
anomaly. It was found that for 4-dimensional higher derivative scalar ˇeld theory
the trace anomaly can be obtained from the action E =

∫
d4x

√−g SΔ4S, where
Δ4 ≡ (∇2)2−2Rμν∇μ∇ν +(2/3)R∇2−(1/3)(∇μR)∇μ. Operator Δ4 contains
the conformally covariant structure for a fourth-order differential operator [10].
The ˇeld S(x) in (14) provides an instructive and useful control over UV and IR
divergences for its free propagator. More detailed consideration of dipole-ˇeld
scalars are given in [11Ä15].

In the framework of the decomposition scheme [3], the unparticle interaction
with the SM quarks in (7) becomes

1
Λd−1

g� ψ̄ γμ ψ

∞∑
k=1

fk ∂μ Sk, (15)

where

f2
k =

Ad

2π

(
m2

Sk

)d−2
Δ2

s, Ad =
16π5/2

(2π)2d

Γ(d + 1/2)
Γ(d − 1)Γ(2d)

. (16)

The pseudodilaton ˇelds Sk are characterized by the mass squared m2
Sk

= k Δ2
s

as Δs → 0. Therefore, the coupling of each Sk to the SM quarks is proportional
to Δs and vanishes in the continuum limit Δs → 0.

The most general form of the commutator for free Bμ ˇeld is (we put ξ = 1,
α = 1 so simplicity)

[Bμ(x), Bν(y)] = igμν

[
−μ2Λ2(d−1)E(x − y) + cD(x − y) + const

]
, (17)
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where c is an arbitrary real number; the commutator functions, namely, the
invariant function E(x − y) and the Pauli-Jordan function D(x − y) are [16, 12]

E(x) = i

∫
2π sign (p0)δ′(p2) e−ipx d4p

(2π)4
= (8π)−1 sign (x0)θ(x2), (18)

D(x) = ∇2E(x) = (2π)−1 sign (x0) δ(x2) (19)

with their properties

E(0,x) = ∂0E(x)|x0=0 = ∂2
0E(x)|x0=0 = 0, ∂3

μE(x)|x0=0 = gμ 0δ
3(x), (20)

∇2D(x) = 0, D(0,x) = 0, ∂0D(0,x) = δ3(x). (21)

The form (17) ensures the equal-time canonical commutation relation (CCR)

[Bμ(x), πBν (y)]x0=y0 = igμνδ3(x − y), (22)

where
πBμ = Λ1−d [∂μC0 − ∂0Cμ − g0μ (∂ · C) + ∂μB0 − ∂0Bμ] . (23)

The next step is to decompose E(x) into its negative (E−(x)) Å and positive
(E+(x) = [E−(x)]∗ = −E−(−x)) Å frequency parts, each of which is analytic
in the past and future tubes: E(x) = E−(x) + E+(x) with [16]

E−(x) = i

∫
2πθ(p0)δ′(p2) e−ipx d4p

(2π)4
= − i

(4π)2
ln

l2

−x2 + iεx0
=

= − i

(4π)2
[ln |κ2x2| + iπ sign (x0)θ(x2)]. (24)

Here, l is an arbitrary length scale with dimension minus one in mass units
and introduced in the logarithmic function ln [−(x0 − iε)2 + x2] for dimensional
reason, and κ ∼ l−1 being the mass parameter of the IR regularization. The origin
of l becomes more transparent in momentum space. Note that the distribution
θ(p0)δ′(p2) in (24) is well-deˇned only with the basic functions u(p) having the
properties: u(p) = 0 at p = 0.

The time-ordered two-point Wightman function (TPWF) for Bμ ˇeld is

Wμν(x) = 〈0|TBμ(x)Bν (0)|0〉 = θ(x0)ωμν(x) + θ(−x0)ωμν(−x), (25)

where ωμν(x) = 〈0|Bμ(x)Bν(0)|0〉 is

ωμν(x) = igμν

[
−μ2

Λ2(1−d)
E−(x − y) + c D−(x − y) + const

]
(26)

with D(x) = D−(x) − D−(−x).
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Using results obtained in [15], we get the propagator function (25) in 4D-
momentum space in any local covariant gauge

W̃μν(p) =
[
gμν −

(
1 − 1

ξ2

)
pμ pν

p2

]
μ2 τ(p; κ2), (27)

where

τ(p; κ2) =
∞∑

k=1

lim
λk→0

f2
k

[
1

(p2 − λ2
k + iε)2

+
i

(4 π)2
ln

λ2
k

κ2
δ4(p)

]
. (28)

The distribution lim
λ2

k→0
[1/(p2 −λ2

k + iε)2] is deˇned only on a particular subspace

of the space of complex Schwartz test functions on 	4, namely on those (test)
functions f(p), such that f(0) = 0. The set of its extensions onto the whole space
is a one-parameter set of functionals parameterized by κ. It means that the set of
Lorentz-invariant, causal extensions of this distribution to those not vanishing at
p = 0 constitute a new κ-parameter family.

In the continuum limit the ˇnal result for τ(p; κ2) is

τ(p; κ2) =
Ad

2π

{
(2 − d)π
(−1)d−1

cosec [(d − 1)π]
1

(p2 + i ε)3−d
+

+ lim
ε→0

i

(4π)2
ln ε − γ − ψ (3/2 − d)

(3/2 − d) ε3/2−d

1
(κ2)3/2−d

δ3(p)
}

, (29)

which is valid for 1 < d < 3/2; γ = −Γ′(1) 
 0.577, ψ(x) = Γ′(x)/Γ(x)
is the digamma-function. This formula accompanied by (27) gives the main
result for ®ungluon¯ propagator which has the asymptotic behaviour in the form
∼ gμνμ2/(p2)3−d at ξ = 1.

There are prices that must be paid for maintaining new result: i) the Fourier
transformation of TPWF ωμν(x) contains δ′(p2) function which is the conse-
quence of nonunitarity character of the model (δ′ is not a measure); ii) the
spectral function of the ˇrst term in expansion (26) gives an indeˇnite metric and
hence the translations become pseudounitarity (see paper [11] for details).

CONCLUSIONS

The gauge unparticle model has been studied, using canonical quantiza-
tion in the framework of decomposition scheme. One of the main objects
is the pseudodilaton ˇeld S(x) which governs the ®ungluon¯ ˇeld Bμ(x) =
Λd−1 ∂μS(x). We have found the propagator function W̃μν(p) (27) of ®unglu-
on¯ ˇeld in 4D-momentum space in any local covariant gauge. The dipole-type
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®ghost¯ behaviour of W̃μν(p) is evident. It is shown that no mass of ®ungluon¯
ˇeld appeared in (29).

The nonunitarity character of the model is the direct consequence of i) the
form of the Lagrangian density (7), ii) scale and gauge invariance of the model,
iii) spontaneous breaking of scale invariance, iv) the form of the equation of mo-
tion and related commutator for the ˇeld Bμ(x) (17) which ensures the CCR (22).

It follows from our investigation that the degrees of freedom called ®unpar-
ticles¯ in [1] do, indeed, in the gauge sector very much behave like the ®ghost¯
ˇelds.

It would be especially interesting to see how the inclusion of the correction
to nonperturbative potential arising from exchange of ®ungluons¯ (at least to the
lowest order) affects the QCD physics. This item is left for a future paper.
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