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STRUCTURE OF THE NUCLEON IN CHIRAL
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We propose a new approach to treat the nucleon structure in terms of an effective chiral
Lagrangian. The state vector of the nucleon is deˇned on the light front plane and is decomposed
in Fock components. An adequate Fock sector-dependent renormalization scheme is applied. We
present our ˇrst results of the calculation of nucleon properties in a two-body Fock truncation.
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INTRODUCTION

For the last 40 years, pionÄnucleon systems and their theoretical investigation
within the general framework of chiral perturbation theory have been of great in-
terest. Since the nucleon mass is not zero in the chiral limit, all momentum scales
are involved in the calculation of baryon properties (like masses or electroweak
observables) beyond tree level. This is at variance with the meson sector for
which a meaningful power expansion in characteristic momenta of any physical
amplitude can be done. While there is not much freedom, thanks to chiral symme-
try, for the construction of the effective Lagrangian in Chiral Perturbation Theory
(ChPT), LChPT, in terms of the pion ˇeld Å or more precisely, in terms of the
U ˇeld deˇned by U = exp (iτφ/fπ) where fπ is the pion decay constant Å
one should settle an appropriate approximation scheme in order to calculate the
baryon properties. Up to now, two main strategies have been adopted. The ˇrst
one is to force the bare (and hence the physical) nucleon mass to be inˇnite, in
Heavy Baryon Chiral Perturbation Theory [1]. In this case, by construction, an
expansion in characteristic momenta can be developed. The second one is to use
a speciˇc regularization scheme [2] in order to separate contributions which ex-
hibit a meaningful expansion in momenta and hide the other parts in appropriate
counterterms. In both cases however, the explicit calculation of baryon properties
relies on an extra approximation in the sense that physical amplitudes are further
calculated by expanding LChPT in a ˇnite number of pion ˇelds.
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Fig. 1. Two-body irreducible contribution to the nucleon state vector

Fig. 2. General vertex including a maximum of (N − 1) pion ˇelds in the initial and ˇnal
states

Following [3], we propose to calculate nucleon properties using the general
eigenvalue equation for the state vector projected on the light front. This non-
perturbative equation is then solved in a truncated Fock space. This enables to
consider irreducible contributions arising from ππNN contact interactions in a
systematic way, as shown in Fig. 1. It was calculated in perturbation theory in [4].
This decomposition of the state vector in a ˇnite number of Fock components
implies to consider an effective Lagrangian which enables all possible elementary
couplings between the pion and the nucleon ˇelds to the same order. This is
indeed easy to achieve in chiral perturbation theory since each derivative of the
U ˇeld involves one derivative of the pion ˇeld. In the chiral limit, the chiral
effective Lagrangian of order p involves p derivatives and at least p pion ˇelds.
In order to calculate the state vector in the N -body truncation, with one fermion
and (N − 1) pions, one has to include contributions up to 2(N − 1)-pion ˇelds in
the effective Lagrangian, as shown in Fig. 2. We thus should calculate the state
vector in the N -body truncation with an effective Lagrangian, denoted by LN

eff ,
and given by

LN
eff = Lp=2(N−1)

ChPT .

1. BOUND STATES IN LIGHT-FRONT DYNAMICS

One of the main advantages of Light-Front Dynamics (LFD) is that the
vacuum state of a physical system coincides with the free vacuum. All inter-
mediate states result from �uctuations of the physical system. So it is very
natural to decompose the state vector |p〉 in a series of Fock sectors: |p〉 =
|1〉+ |2〉+ . . .+ |N〉+ . . . Each term of this expansion denotes a state with a ˇxed
number, n, of particles from which the physical system can be constructed. For
obvious practical reasons, this expansion should be truncated. We shall call N the
maximal number of Fock sectors under consideration. Each Fock sector is then
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described by a nonperturbative many-body component, called vertex function.
Graphically, the vertex function of order n, i.e., including n particles, in a trun-

cation to order N , is represented by the diagram of Fig. 3. It is denoted by Γ(N)
n .

This state vector is a solution of the general eigenvalue equation P̂ 2|p〉 = M2|p〉,
where P̂ is the full momentum operator and M is the physical bound state mass.

Fig. 3. Vertex function of order n for the N-body Fock space truncation

In the standard version of LFD the state vector is deˇned on the plane
t + (z/c) = 0. This plane is not invariant under spatial rotations. This may
lead to many unpleasant consequences for any approximate calculation. We use
in our work the so-called explicitly covariant formulation of LFD (CLFD) [5].
Within this formalism, the state vector is deˇned on the plane characterized by
the equation ωx = 0, where ω is an arbitrary light-like 4-vector. The standard
LFD plane corresponds to the particular choice ω = (1, 0, 0,−1). Of course,
physical observables should coincide in both approaches in any exact calculation.
However, in approximate calculations, the use of CLFD is of particular interest.
In that case, this framework allows one to separate physical observables from
ω-dependent unphysical ones in a very transparent way, while exact calculations
should not depend on the arbitrary position of the light front.

In order to make deˇnite predictions for physical observables we should de-
ˇne a renormalization scheme. It should be done with care since any truncation
of the Fock space may induce uncancelled divergences. Let us look, for instance,
to the calculation of the physical fermion propagator in the second-order pertur-
bation theory as represented in Fig. 4. The propagator has three contributions:
free propagator, the self-energy contribution, and the mass counterterm. The last
contribution corresponds to the one-body Fock sector (single fermion). It should
however be opposite to the two-body Fock sector contribution (one fermion plus
one boson) at p2 = M2, in order to recover the free physical propagator. It is

Fig. 4. Renormalization of the fermion propagator in the second-order of perturbation
theory
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thus clear that if the Fock state is truncated, such cancellation, to all orders, may
be broken. A general renormalization scheme to deal with Fock state truncation
in light-front dynamics has been developed in [6].

2. EIGENVALUE EQUATION

In order to show how one should proceed, we start from the following typical
pionÄnucleon interaction Lagrangian

Lint = −1
2

gA

F0
Ψ̄ γμ γ5 τb ∂μφb Ψ − 1

4F 2
0

Ψ̄ γμ τ · φ × ∂μφ Ψ. (1)

The ˇrst term is the standard pseudovector pionÄnucleon coupling, and the sec-
ond one is the leading contact ππNN interaction. Other contributions involving
two pion ˇelds arise from the second-order πN chiral perturbation theory La-
grangian [7]. They can be included in a very similar way to the ππNN contact
interaction.

Solving the eigenvalue equation [6], we can represent the system of coupled
equations for the vertex functions in the two-body truncated Fock space by the
diagrams of Fig. 5. It can be written as

ū(p1)Γ1u(p) = ū(p1)(V1 + V2)u(p), (2)

ū(k1)Γ2u(p) = ū(k1)(V3 + V4)u(p). (3)

Here p is the four-momentum of the physical fermion, p1 and k1 are the four-
momenta of the constituent fermion in the one-body and two-body Fock space
truncation, respectively. The graph denoted by V4 corresponds to the second term
in the interaction Lagrangian (1).

Fig. 5. System of equations for the pionÄnucleon vertex functions in the two-body Fock
space truncation
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The vertex functions Γ1 and Γ2 should be decomposed in independent spin
structures. Using the explicit covariance of our approach, we can write

ū(k1)Γ1u(p) = (m2 − M2)a1ū(k1)u(p)

ū(k1)Γ2u(p) = iū(k1)
(

(�k2− �ωτ) b1(k⊥, x) +
m �ω
ω · p b2(k⊥, x)

)
γ5u(p),

where τ =
s − M2

2 ω · p is the off-shell energy, with s = (k1 + k2)2; k⊥ and x are

the usual light cone variables. The mass of the physical bound state is denoted
by M , while m is the mass of the constituent fermion. In the ˇnal result, one
should take the limit m → M . Generally speaking, b1(k⊥, x) and b2(k⊥, x)
are scalar functions depending on the dynamical variables (momenta). In the
two-body truncation, with the Lagrangian (1), they are just constants. The spin
decomposition of the two-body component in terms of independent spin structures
is of course not unique. We choose here the most convenient one.

On the energy shell, i.e., for s = M2, the two-body vertex function Γ2 should
be independent of the arbitrary position of the light front, so that, since b2 is a
constant, one should have the condition

b2 = 0. (4)

The loop contributions of Fig. 5 are a priori divergent, and one should use an
appropriate regularization scheme in order to give them a mathematical sense. In
our study, we shall use the PauliÄVillars (PV) regularization scheme as applied
to CLFD [6]. We thus should extend all physical components to incorporate PV
particles. For simplicity, we have left over all indices relative to physical and PV
particles in the vertex functions in the eigenvalue equations (2), (3) and in Fig. 5.

The general strategy to solve the coupled eigenvalue equations shown in
Fig. 5 is detailed in [6]. Its solution for the simplest case, namely, without the
ππNN contact interaction, i.e., without the graph V4 from the system presented
in Fig. 5 can be found analytically as a function of PV masses. At the end, we
take the limit of inˇnite PV masses and the solution reads:

b1 = −gA

F0
Ma0

1, b2 = 0,

where a0
1 should be found from the normalization condition. The necessary

condition (4) is satisˇed automatically. This solution corresponds exactly to the
perturbative calculation.

We also have found a solution in the more general case given by the La-
grangian (1), i.e., with the ππNN contact interaction. The solution is also
analytic but more complicated, because V4 includes an additional loop and it
leads to introducing new counterterms into the effective Lagrangian.
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SUMMARY

We have outlined in this preliminary study the main steps in the calculation of
nucleon properties within light front chiral effective ˇeld theory. Our formalism
is based on the Fock expansion of the nucleon state vector, projected on the light
front. Using the properties of the explicitly covariant formulation of light-front
dynamics, and an adequate renormalization scheme when the Fock expansion is
truncated, we have calculated explicitly the spin components of the state vector
in the two-body truncation.
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