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STRONG FIELD GENERALIZATION
OF THE INTERBAND TRANSITIONS KINETICS
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A nonperturbative kinetic equation (KE) for description of two-band transitions under action of
a strong time-dependent electric ˇeld is obtained for arbitrary dispersion laws of carriers in the c- and
v-zones (the previously analogical KE was obtained in [1] for the case of quadratic mirror symmetric
dispersion laws). The developed approach is based on the similarity to the dynamical Schwinger
effect and considers the creation and annihilation processes as the coherent one.

PACS: 11.10.-z

INTRODUCTION

In the present work the generalization of the KE of the work [1] is obtained for
the case of arbitrary dispersion laws of electrons and holes in two-band solid state
model. Both these works are based on the analogy with QED where the electron
and positron evolution (in particular, their creation and annihilation) is considered
as a coherent process. The KE received in this work is simple generalization of the
KE [1] obtained for the quadratic mirror symmetric dispersion laws of the carriers.
This KE is equivalent to the system of ordinary differential equations for the
distribution and polarization functions (e.g., [3]) and has the same mathematical
structure as the standard Bloch equations system based on the nonstationary
perturbation theory in the framework of the dipole approximation.

We follow the work [1] and begin with the free carriers case (Sec. 1).
The next generalization on the case of interaction with time-dependent space-
homogeneous quasiclassical electric ˇelds is considered in Sec. 2. The derivation
of the KE is fulˇlled here too. The last section contains the short summary of
the work.

∗E-mail: smol@sgu.ru



2004 SMOLYANSKY S.A., BONITZ M., TARAKANOV A.V.

1. THE FREE QUASIPARTICLE BASIS

In search of the relevant generalization we will rely on the work [1]. Let
us consider a two-band system of the mirror asymmetric electron states in the v-
and c-zones with dispersion laws

Ec =
�
2

+ εc(p), Ev = −�
2

− εv(p). (1)

The electron states in these zones will be considered coherent with the general
dispersion law

(E − Ec)(E − Ev) =
[
E − �

2
− εc(p)

] [
E +

�
2

+ εv(−p)
]

= 0. (2)

From here follows the equation of motion[
Ê − �

2
− εc(p̂)

] [
Ê +

�
2

+ εv(−p̂)
]

Ψ(x, t) = 0 (3)

with Ê = i∂/∂t and p̂ = −i∇(x). Going over to the momentum representation
(V = L3 is the volume of the system)

Ψ(x, t) =
(2π)3/2

V

∑
p

Ψ(p, t) eipx, (4)

we rewrite Eq. (4) in the form of an oscillator equation[
Ê − �

2
− εc(p̂)

] [
Ê +

�
2

+ εv(−p̂)
]

Ψ(p, t) = 0, (5)

which contains the term with the ˇrst time derivative, [εv(p) − εc(p)] Ê describ-
ing the quantum beating of the electron states in the v- and c-zones.

For construction of the Lagrange and Hamilton formalism, it is convenient
to transform Eq. (5) to the oscillator equation, which does not contain the ˇrst
derivative. The phase transformation

Ψ(p, t) = exp
{

i

2
[εv(p) − εc(p)] t

}
Φ(p, t) (6)

allows one to reach this purpose. The equation for the Φ function has the form

Φ̈(p, t) + Ω2(p)Φ(p, t) = 0, (7)
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where Ω(p, t) is the effective frequency

Ω(p, t) =
1
2

[εv(p) + εc(p) + �] . (8)

The Lagrange function

L(p, t) =
1
�

{∣∣∣Φ̇(p, t)
∣∣∣2 − Ω2(p) |Φ(p, t)|2

}
(9)

corresponds to Eq. (7). The factor 1/� is ˇxed in accordance with the mirror
symmetric dispersion laws εv = εc = ε [1] (that correspond to the case of the
independent bands, � � εc,v). Fulˇlling the inverse transformation (6), we
obtain the Lagrange function in the Ψ representation

L(p, t) =
1
�

{∣∣∣∣Ψ̇∗ +
i

2
(εv − εc)Ψ∗

∣∣∣∣
2

− Ω2(p) |Ψ|2
}

. (10)

The canonical momentum can be found

π(p, t) =
∂L

∂Ψ̇
=

1
�

[
Ψ̇∗ +

i

2
(εv − εc)Ψ∗

]
. (11)

The Legendre transformation brings now the Hamilton function in the momentum
representation

H(p, t) = πΨ̇ + π∗Ψ̇∗ − L, (12)

where L(Ψ, Ψ∗; Ψ̇, Ψ̇∗) is deˇned by Eq. (10).
Let us take into account now, that the decomposition (4) is deˇned on the

hypersurfaces Ei(p) deˇned by the roots of Eq. (2). In order to take it into
account, the additional Fourier transformation is fulˇlled in Eq. (4)

Ψ(x, t) =
(2π)3/2

V

∑
p

∫
dE Ψ̃(E,p) e−iEt+ipx, (13)

and the Fourier transformation Ψ̃(E,p) is ˇxed on the energy surface (2), i.e.,

Ψ̃(E,p) = δ

{[
E − �

2
− εc(p)

] [
E +

�
2

+ εv(−p)
]}

ψ(E,p). (14)

Using the textbook relation

δ[φ(x)] =
∑

i

{|φ′(xi)|}−1δ(x − xi), φ(xi) = 0, (15)
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the decomposition (13) can be rewritten in the form typical of a two-band model
(the electron state is a superposition of electron and hole contributions)

Ψ(x, t) =
(2π)3/2

V

∑
p

√
Δ
2Ω

{
ae(p) e−i(εc+Δ/2)t + ah(−p) ei(εv+Δ/2)t

}
eipx.

(16)
The corresponding decomposition for the canonical momentum follows then from
Eqs. (11) and (16):

π(x, t) =
i(2π)3/2

V

∑
p

√
Ω(p)
2Δ

{
a†

e(p) ei(εc+Δ/2)t − a†
h(−p) e−i(εv+Δ/2)t

}
.

(17)
Substitution of the decompositions (16) and (17) in Eq. (12) leads to the total
Hamilton function

H =
(2π)3

V

∑
p

{[
εc(p) +

�
2

]
a†

e(p)ae(p) +
[
εv(p) +

�
2

]
a†

h(−p)ah(−p)
}

.

(18)
Quantization on the formal level brings to replacement of the amplitudes ae,h

and a†
e,h by the corresponding operators (we will not introduce new notations for

them) deˇned on the stationary vacuum state. The operators of creation and an-
nihilation obeyed the standard anticommutation relations {ae,h(p), a†

e,h(−q)} =
δp,q, etc. The form of the corresponding Hamilton operator is identical to (18).

2. INTERACTION WITH A QUASICLASSICAL ELECTRIC FIELD

An interaction with a quasiclassical electromagnetic ˇeld in the original co-
ordinate representation is introduced by the substitution ∂μ → Dμ = ∂μ + ieAμ

(μ = 0, 1, 2, 3), where Aex
μ + Ain

μ is 4-potential of external and internal ˇeld and
e is the electron charge with its sign. We will restrict ourselves below to the
case of a nonstationary space-homogeneous electric ˇeld with 4-potential in the
Hamilton gauge, Aμ = (0, A1(t), A2(t), A3(t)) and then p̂ → P̂ = p̂ + eA. The
corresponding procedure based on the decompositions (16) and (17) leads to the
nondiagonal form of the Hamiltonian (12) in the momentum space, that makes
the physical meaning of the ae,h operators difˇcult. The adequate interpreta-
tion is achieved by transition to the quasiparticle (QP) representation, where all
observable operators have the diagonal form. Usually, the Bogoliubov method
of time-dependent canonical transformations is used [2]. We will use below an
economical method based on the holomorphic (oscillator) representation [3], that
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was developed for the problem of the relativistic kinetics of vacuum pair creation
in strong electromagnetic ˇeld.

In accordance with the method of works [1, 3], it is necessary to make the
substitution p̂ → P̂ in the dispersion law occurring in the decompositions (16)
and (17) for the free ˇeld wave function and canonical momentum and also to
introduce new time-dependent amplitudes (or operators) ae,h(p, t) by the replace-
ment

ae(p) e−i(εc+Δ/2)t → ae(p, t), ah(−p) ei(εv+Δ/2)t → ah(−p, t), (19)

and so on. The result is the following:

Ψ(x, t) =
(2π)3/2

√
V

∑
p

√
Δ

2Ω(P)
{ae(p, t) + ah(−p, t)} eipx, (20)

π(x, t) =
i(2π)3/2

√
V

∑
p

√
Ω(P)
2Δ

{
a†

e(p, t) − a†
h(−p, t) e−ipx

}
. (21)

Here it is assumed, that the dispersion laws εe,h(p) are not changed under action

of the external ˇeld besides the trivial displacement p̂ → P̂, i.e., the dynamic
Stark effect is not considered and magnitude of the gap and the band boundaries
remain invariable. The total Hamiltonian Htot can be obtained now from the free
Hamiltonian (12) by the replacement ∂ → Dk (k = 1, 2, 3). The subsequent sub-
stitution of Eqs. (20), (21) brings at once to the diagonal form of the Hamiltonian
in the QP representation

Htot(t) =
(2π)3/2

√
V

∑
p

{[
εc(P) +

�
2

]
a†

e(p)ae(p) +

+
[
εv(−P) +

�
2

]
a†

h(−p)ah(−p)
}

. (22)

The new time-dependent amplitudes ae,h(p, t) obey the exact equations of
motion, which can be obtained from the minimal action principle

S =
∫

dx
{

π(x, t)Ψ̇(x, t) + Ψ̇∗(x, t)π∗(x, t) − Htot(x, t)
}

(23)

in the QP representation with the decompositions (20), (21)

S =
∫

dt
(2π)3

V

∑
p

{
i

2

(
[ae(p, t) − a†

h(−p, t)][ȧc(p, t) + ȧh(−p, t)]−

− [ae(p, t) − ah(−p, t)][ȧ†
e(p, t) + ȧ†

h(−p, t)]+

+λ(p, t)[a†
h(−p, t)ae(p, t) − a†

e(p, t)ah(−p, t)]
)
− Htot(p, t)

}
, (24)
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where Htot(x, t) and Htot(p, t) are the Hamiltonian densities in the x- and
p-representations. λ(p, t) is the amplitude of interband transitions

λ(p, t) =
1
2

√
Ω(p, t)

∂

∂t

1√
Ω(p, t)

=

= − ε̇c(p, t) + ε̇v(−p, t)
4Ω(p, t)

= eE(t)
vc(p, t) + vv(−p, t)

4Ω(p, t)
, (25)

where E(t) = −Ȧ(t) is the electric ˇeld strength and ve,h(p, t) = ∂εe,h/∂P is the
group velocities of the carriers. Then the operator equations of motion follow from
Eq. (24) by variation on the amplitudes and subsequent transition to the occupation

number representation with the anticommutation relations
{
ae,h(p), a†

e,h(q)
}

=
δp,q (the remaining elementary anticommutators equal zero). These Heisenberg-
like equations of motion are the following:

ȧe(p, t) = λ(p, t)a†
h(−p, t) + i [Htot(t), ae(p, t)] ,

ȧh(p, t) = λ(p, t)a†
e(−p, t) + i [Htot(t), ah(p, t)] .

(26)

The ˇrst term in r.h.s. of these equations describes intermixing of the e- and
h-states. Hence, the parameter (25) is the intermixing amplitude. It is very
important, that the Hamiltonian and the total charge operator have the diagonal
form in this representation. Thus, the oscillator representation is simultaneously
a quasiparticle one.

It is assumed that the electric ˇeld is switched off in the in- and out-states and
the quasiparticle excitations become ®free¯ and available for direct observation.
In addition, it is also supposed here, that the system is found in the ground state
at the initial moment t0 → −∞ and, hence, the initial state is the vacuum state
|0 > of electron and holes quasiparticles. This state is not equal to the out-state,
where some quantity of electrons and holes can remain after switch off of the
electric ˇeld.

The resulting closed form of the KE follows from the well-known proce-
dure [1]:

ḟ(p, t) = 2λ(p, t)

t∫
−∞

dt′ λ(p, t′)[1 − 2f(p, t′)] cos 2θ(p, t, t′), (27)

where the dynamical phase

θ(p, t, t′) =

t∫
t′

dτ Ω(P, τ) (28)
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corresponds to the quantum ®beating¯ of the interband transition. This equation
is equivalent to an integral equation of the Volterra type. The right-hand side of
the KE (27) is responsible for creation and annihilation of electronÄhole pairs and
has the same form as in QED (with an essential difference in construction of the
amplitude λ(p, t)), where the corresponding KE describes the vacuum creation of
electronÄpositron pairs. There is another essential difference from QED kinetics,
where m is the unique mass parameter: the present model is the multiparameter
one (the width of gap and zones) [1]. The KE (27) can be rewritten in the evident
gauge invariant form by change of variables p̂ → P̂ in the distribution functions
f(p, t) → f(P, t).

The KE (27) can be transformed to the system of ordinary differential equa-
tions, which is convenient for numerical analysis

ḟ = λu, u̇ = 2λ(1 − 2f) − (2ε + Δ)v, v̇ = (2ε + Δ)u, (29)

where u + iv = 2f (+) and f (+) is

f
(±)
e,h (p, t) =

t∫
−∞

dt′ λ(p, t′)[1 − fe(p, t′) − fh(−p, t′)] e±2iθ(p,t,t′), (30)

fe,h Å the quasiparticle distribution functions of electrons and holes. These
equations have the ˇrst integral (1− 2f)2 + u2 + v2 = 1, according to which the
phase trajectories are located on an ellipsoid with top coordinates f = u = v = 0
and f = 1, u = v = 0.

SUMMARY

The KE (27) is a nonperturbative result of the considered theory of the
coherent excitations of interband transitions under action of a time altering electric
ˇeld. Intensity of the electronÄhole creation and annihilation processes is deˇned
entirely by the effective dispersion law (8). The investigation of this KE is
supposed to be continued in the next works.
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