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This contribution follows the talk, given by F. Delduc at the conference SQS'2011 in Dubna,
Russia (July 18Ä23, 2011). To a considerable extent it is a summary of known facts about the links
between geometry and extended supersymmetry in d = 1 mechanics, with emphasis on the harmonic
superspace method created in Dubna in the 80s. Some recent developments based on [1] are also
presented.
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OUTLINE

This paper is organized as follows:
Å Motion of a particle on a manifold. An action such that the trajectories

are geodesics on some Riemannian manifold is recalled.
Å Supersymmetric extension and torsion. An extension of this model to

N = 1 worldline supersymmetry is introduced. The geometry then naturally
contains a torsion.

Å N = 2 supersymmetry. Constraints on the geometry such that an extended
N = 2 supersymmetry emerges are recalled. The general solution to these
constraints is given. The objects which parametrize this solution, the prepotentials,
are used to construct a superˇeld action with explicit N = 2 supersymmetry.

Å N = 2 supersymmetry, particular cases via reduction from d = 2, 4. The
special cases corresponding to Kéahler and Kéahler with torsion geometries, which
may be obtained by dimensional reduction from higher dimensions, are recalled.

Å N = 4 supersymmetry, constraints. Geometrical constraints on the geom-
etry such that an extended N = 4 supersymmetry is present are recalled.

Å N = 4 supersymmetry, particular cases via reduction from d = 2, 4. The
special cases corresponding to hyper-Kéahler (HK) and hyper-Kéahler with torsion
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(HKT) geometries, which may be obtained by dimensional reduction from higher
dimensions, are recalled.

Å Harmonic superspace. Basic facts about harmonic superspace are recalled,
with the eventual aim to write down the prepotentials of KT and HKT geometries.
One has to use 2n charge-one superˇelds, which describe n hypermultiplets with
the off-shell content (4,4,0).

Å Superˇeld constraints and action. A general set of superspace constraints
and a general superspace action is proposed for n hypermultiplets in d = 1
mechanics, following [1].

Å Components, bridges and metric. Some basic details of expressing geo-
metrical objects (the metric, in particular) in terms of the initial data in harmonic
superspace are described. A thorough study of these geometrical objects leads
to the result that the relevant geometry is analogous to the HKT geometry, apart
from the fact that the torsion is not closed. Such a geometry is called weak HKT.

Å Beyond weak HKT. It is conjectured that one might describe more general
geometries through the simultaneous use of two different kinds of hypermultiplets.
A calculation in N = 2 superspace sustaining this conjecture is outlined.

MOTION OF A PARTICLE IN A RIEMANNIAN MANIFOLD M

We consider a differentiable manifold M and a set of local coordinates
xi, i = 1, . . . , n, on M . A particle will follow a trajectory parametrized by
coordinates xi(t) depending on time t. This trajectory may be obtained as a
minimum of the action

S[x] =
∫

dt gij(x)ẋiẋj , ẋi =
dxi

dt
, (1)

where gij(x) are the components of a metric tensor on the manifold M . The
equations of motion are given by

ẍi + γi
jkẋj ẋk = 0, (2)

where γi
jk(x) are the Christoffel symbols associated with the metric gij(x)

γi
jk =

1
2
gil(∂jglk + ∂kglj − ∂lgjk). (3)

Equations (2) are the equations of geodesics in a particular parametrization, such
that the velocity vector has a constant length along the trajectory, ẋiẋjgij = const.
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SUPERSYMMETRIC EXTENSION AND TORSION

We now consider a superspace with coordinates (t, θ), where θ is a real
Grassmann variable. Supersymmetry transformations are realized as particular
translations in superspace, with δθ = ε, δt = −iεθ, and ε is a real Grassmann
parameter. The anticommutator of two supersymmetry transformations is a time
translation. We introduce superˇelds X i(t, θ) such that their ˇrst components
xi(t) = X i(t, θ)|θ=0 give back the coordinates of the particle at time t. We shall
use the supersymmetric derivative:

D =
∂

∂θ
+ iθ

∂

∂t
, D2 = i

∂

∂t
. (4)

We then write a general supersymmetric action, constrained by the requirement
that bosonic component ˇelds have a ˇeld equation of second order in time
derivatives:

S[X ] =
∫

dt dθ

(
igij(X)Ẋ iDXj +

1
3!

cijk(X)DX iDXjDXk

)
, (5)

where cijk(x) is an antisymmetric tensor, which will play the role of a torsion. In
particular, the ˇeld equations involve the following covariant derivatives (written
for an arbitrary vector ˇeld V j)

∇iV
j =

∂

∂xi
V j + Γj

ikV k, (6)

where the connexion reads

Γj
ik = γj

ik +
1
2
gjlcikl. (7)

It contains, as a symmetric part, the Christoffel symbols previously introduced
and, as an antisymmetric part, the new torsion tensor cikl. It is still a metric
connexion, meaning that the covariant derivative of the metric vanishes.

Thus, given any geometry deˇned by a metric and a torsion, there is an
N = 1 supersymmetric action encoding this geometry.

N = 2 SUPERSYMMETRY

We now look for conditions on the geometry, such that extended worldline
N = 2 supersymmetry is in fact present. The way to do that may be found
in a 1980 article by L. Alvarez-Gaum�e and D. Freedman [2]. We consider a
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general form of the transformations under the second supersymmetry, such that
it automatically anticommutes with the ˇrst supersymmetry

δX i = ε′J i
j(X)DXj, (8)

where ε′ is an extra Grassmann parameter and J i
j(x) is a tensor on M . There are

now two sources of constraints on the tensor J .
The ˇrst one comes from requiring that the new transformations form a

supersymmetry algebra. This leads to the equations

J i
jJ

j
k = −δi

k, J l
i

∂

∂x[l
Jk

j] − J l
j

∂

∂x[l
Jk

i] = 0, (9)

which are summarized by saying that the tensor J is an integrable complex
structure.

The second source of constraints comes from requiring that the transforma-
tions (8) leave invariant the action (5). This leads to three equations. The ˇrst
one is

gikJk
j + Jk

i gkj = 0, (10)

and it means that the metric is Hermitian with respect to the complex structure.
The second equation is

∇iJ
k
j + ∇jJ

k
i = 0, (11)

and it means that the symmetrized covariant derivatives of the complex structure
vanish. The covariant derivatives are just those introduced in (6) and (7). Finally,
the third equation reads

∂[i(Jm
j ckl]m) − 2Jm

[i ∂[mcjkl]] = 0. (12)

It tells us that some 4-form, linear in the torsion c and the complex structure
J , vanishes. All these results may be found in a 1990 article by R. Coles and
G. Papadopoulos [3].

It turns out that the constraints (9)Ä(12) may easily be solved. From (9) it
follows that there exist local complex coordinates (zα, z̄ᾱ), such that the complex
structure is constant

Jβ
α = iδβ

α, J β̄
ᾱ = −iδβ̄

ᾱ, J β̄
α = Jβ

ᾱ = 0, (13)

and the change of coordinates leading from one patch to another has to be holo-
morphic. In these complex coordinates, the metric has only mixed components
gαβ̄ , gαβ = gᾱβ̄ = 0. Finally, from the remaining two constraints (11) and (12),
one may show that the torsion is fully speciˇed in terms of the metric and a
2-form Bαβ , B̄ᾱβ̄ , with the mixed components vanishing.
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One may then write an action for this geometry which has explicit N = 2
supersymmetry. One uses an N = 2 superspace with coordinates (t, θ, θ̄), where
θ is now a complex Grassmann variable, and supersymmetric derivatives are

D =
∂

∂θ
+ iθ̄

∂

∂t
, D̄ =

∂

∂θ̄
+ iθ

∂

∂t
, D2 = D̄2 = 0, {D, D̄} = 2i

∂

∂t
. (14)

The coordinates zα, z̄ᾱ are deˇned as the ˇrst components of N = 2 superˇelds
Zα, Z̄ᾱ, which satisfy the chirality constraints D̄Zα = 0, DZ̄ᾱ = 0. The most
general action reads

S[Z, Z̄] =
∫

dt dθ dθ̄(gαβ̄DZαD̄Z̄ β̄ + BαβDZαDZβ + B̄ᾱβ̄D̄Z̄ᾱD̄Z̄ β̄). (15)

This action is written in terms of the unconstrained objects gαβ̄ , Bαβ , Bᾱβ̄ ,
which determine the geometry. It is a general fact that the actions with explicit
extended supersymmetry are written in terms of the unconstrained data (called
prepotentials) which determine the geometry. This general N = 2 superspace
action (15) may be found, together with many other related results, in a 1999
article by C.Hull [4]∗.

N = 2 SUPERSYMMETRY, PARTICULAR CASES
VIA REDUCTION FROM d = 2, 4

Among these N = 2 geometries in supersymmetric mechanics, some spe-
cial cases originate from theories in dimension d = 2 and d = 4 through the
dimensional reduction to d = 1. We recall that, in two dimensions, one separates
right-handed and left-handed supersymmetries and uses the symbol N = (p, q) to
denote them.

• N = 1 supersymmetry, d = 4 (or N = (2, 2) supersymmetry, d =
2): Torsion vanishes, covariant derivatives of the complex structure vanish. It
corresponds to the celebrated Kéahler geometry. In this case, the metric may be
written as a second derivative

gαβ̄ = ∂α∂β̄K(z, z̄), (16)

where the scalar function K(z, z̄) is called the Kéahler potential. The Kéahler
potential is not necessarily deˇned as a function on the whole manifold. It may
change, when going from the patch U(a) to another patch U(b), as

K(b)(zβ , z̄β) = K(a)(zα, z̄α) + f(zα) + f̄(z̄α). (17)

∗The N = 2 supersymmetric quantum mechanics associated with the action (15) also exhibits
interesting geometric properties, which have recently been analyzed in [5].
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In d = 4 and d = 2, the superspace action is directly determined by the Kéahler
potential. This was the ˇrst example of an action given in terms of the prepotential
of the target geometry, and it can be found in a 1979 paper by B.Zumino [6].

• N = (2, 0), d = 2: Torsion is a closed 3-form, covariant derivatives of the
complex structure vanish. This geometry is called Kéahler with torsion (KT). The
prepotential of this geometry has a vector index

gαβ̄ = ∂β̄Vα + ∂αVβ̄ , (18)

and the torsion tensor is also determined in terms of the vector prepotential
Vα, Vβ̄ , which is not a globally deˇned vector ˇeld, however. The Kéahler geom-
etry appears as a special case of the KT geometry, when the vector potential V
is expressible as a derivative of the scalar potential K ,

Vα =
1
2

∂

∂zα
K, Vᾱ =

1
2

∂

∂z̄ᾱ
K. (19)

This geometry was described in a 1985 article by C. Hull and E. Witten [7].

N = 4 SUPERSYMMETRY, CONSTRAINTS

The constraints which ensure the action (5) to possess N = 4 supersymme-
try form a natural generalization of the N = 2 constraints [3]. Since we use a
formalism with one supersymmetry being explicit, we need three additional super-
symmetry transformations anticommuting with the ˇrst one. We thus introduce
3 tensors Ja, a = 1, . . . , 3, and write the inˇnitesimal transformations as

δX i =
3∑

a=1

εa(Ja)i
jDXj, (20)

where εa, a = 1, 2, 3, are three real Grassmann parameters.
Again, a ˇrst set of constraints comes from requiring that the new transfor-

mations form the supersymmetry algebra and anticommute with each other. One
ˇnds

JaJb+JbJa = −2δab1, (Ja)l
i

∂

∂x[l
(Jb)k

j]−(Ja)l
j

∂

∂x[l
(Jb)k

i]+(a ↔ b) = 0. (21)

Thus, the tensors Ja are three integrable complex structures, which anticommute
with each other.

A second set of constraints comes from requiring the invariance of the ac-
tion (5) under the transformations (20). First, the metric has to be Hermitian with
respect to all three complex structures

gik(Ja)k
j + (Ja)k

i gkj = 0, (22)
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second, the symmetrized derivatives of all three complex structures should vanish,

Di(Ja)k
j + Dj(Ja)k

i = 0, (23)

and, ˇnally, three 4-forms made out of the complex structures and the torsion
should vanish

∂[i((Ja)m
j ckl]m) − 2(Ja)m

[i ∂[mcjkl]] = 0. (24)

The resolution of these constraints is much more difˇcult than in the N = 2
case. Some particular cases are known, and now we shall recall them.

N = 4 SUPERSYMMETRY, PARTICULAR CASES
VIA REDUCTION FROM d = 2, 4

Some of the mechanical models with N = 4 supersymmetry may be obtained
by dimensional reduction from models in a higher dimension.

• N = 2 supersymmetry, d = 4 (or N = (4, 4) supersymmetry, d =
2): Torsion vanishes, all three complex structures are annihilated by covariant
derivatives and form the quaternionic algebra

JaJb = −δab1 + εabcJc. (25)

This particular geometry is called the hyper-Kéahler (HK) geometry.
• N = (4, 0), d = 2: Torsion is a closed 3-form, complex structures are

annihilated by covariant derivatives (with a connexion including torsion) and form
the quaternionic algebra. This geometry is called the hyper-Kéahler with torsion
(HKT) geometry.

In both cases, the prepotentials of the geometry are known. They have been
studied by A.Galperin, E. Ivanov, S. Kalitzin, V.Ogievetsky and E. Sokatchev [8]
for the HK geometry and by F.Delduc, S. Kalitzin, E. Sokatchev [9] for the HKT
geometry. Both cases require making use of harmonic superspace.

HARMONIC SUPERSPACE [10, 11]

The coordinates of N = 4 superspace in one dimension may be written as
(t, θi, θ̄i), where θi, i = 1, 2, is a pair of complex Grassmann variables. In the
harmonic approach, one adds to these variables another set of bosonic variables
(u±

i ), i = 1, 2, called harmonic variables. They should be such that the 2 by 2
matrix (

u+
1 u−

1

u+
2 u−

2

)
(26)
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belongs to the group SU(2). All ˇelds depend on harmonic variables and have
deˇnite charges under the right action of the diagonal U(1) subgroup of SU(2).
In harmonic superspace, one can ˇnd a subspace invariant under all four super-
symmetries

(tA, θ+ = θiu+
i , θ̄+ = θ̄iu+

i , u±
i ). (27)

This subspace is called analytic superspace. It involves only half of the original
Grassmann variables. To describe HK or HKT geometry, one needs a set of 2n
charge 1 analytic superˇelds (which will be called hypermultiplets)

q+a(tA, θ+, θ̄+, u±), a = 1, . . . , 2n. (28)

In the HK case, the prepotential is a charge 4 scalar function L+4(q+a, u±). In
the HKT case, the analytic prepotential carries an Sp(2n) index and has charge
3, L+3a(q+b, u±). Notice that HK is a special case of HKT, with

L+3a = Ωab ∂

∂q+b
L+4, (29)

where Ω is a 2n by 2n constant regular antisymmetric matrix (also called a
symplectic metric). Since in harmonic superspace there are new coordinates,
the harmonic variables u±

i , there also appear new derivatives, which are consis-
tent with the constraints on the harmonic variables. They are called harmonic
derivatives and read

D++ = u+i ∂

∂u−i
, D−− = u−i ∂

∂u+i
, D0 = u+i ∂

∂u+i
− u−i ∂

∂u−i
. (30)

Their commutation relations give back the Lie algebra of SU(2). An important
point about the derivative operator D++ is that it acts inside the analytic subspace.

SUPERFIELD CONSTRAINTS AND ACTION

In two dimensions, the ˇeld equations of an HKT nonlinear sigma model
read

D++q+a = L+3a(q+, u±). (31)

When restricted to one dimension, this equation is no longer dynamical. It
puts to zero some component ˇelds inside q+a, but it does not restrict the time
dependence of those component ˇelds which survive. It is a harmonic constraint
that restricts the SU(2) content of the superˇelds. It may be shown that the
content of the superˇelds q+a, subject to the constraints (31) (as well as to some
self-consistent reality condition), is just that of n (4,4,0) multiplets of d = 1,
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N = 4 supersymmetry in one dimension. Each (4,4,0) multiplet contains 4 real
bosons and 4 real fermions.

Since the constraints (31) are not dynamical, we need some extra input from
which the equations of motion of the ˇelds may be obtained. The most general
action leading to equations for the physical bosons which are of second order in
time derivatives reads

S =
∫

dt d4θ duL(q+a, q−a, u±), q−a = D−−q+a. (32)

Since this action is integrated over the whole superspace, it is not required that
the integrand lives on the analytic subspace. Indeed, the Lagrangian density L
depends on the non-analytic superˇelds q−a. One may add to this action a term
which is an integral on the analytic subspace only

SWZ =
∫

du dtA d2θ(−2) L+2(q+a, u±). (33)

It is called a WessÄZumino term, and physically it describes the coupling of the
particle to an external magnetic ˇeld. The major part of the article [1] is devoted
to extracting the geometry experienced by the physical ˇelds from the non-linear
constraints (31) and the action (32).

COMPONENTS, BRIDGES AND METRIC

One ˇrst expands the superˇelds q+a in powers of the Grassmann variables
θ+, θ̄+

q+a = f+a(t, u) + θ+χa(t, u) + θ̄+χ̄a(t, u) + θ+θ̄+A−a(t, u). (34)

It may be shown that the component A−a is fully determined by the other
components as a consequence of the constraint (31). The remaining components
are not yet ordinary ˇelds. They depend not only on time, but also on harmonic
variables u±

i . This dependence is restricted as a consequence of the constraint (31)

D++f+a = L+3a(f+, u±), D++χa − ∂L+3a(f+, u±)
∂f+b

χb = 0. (35)

The ˇrst of the equations (35) means that f+a is determined if one knows its
lowest order term in harmonic variables. One has to separate

f+a(t, u) = f ia(t)u+
i + v+a(f jb(t), u±). (36)

The 4n ˇelds f ia(t) form coordinates of the manifold under study. The functions
v+a may be interpreted as a bridge between two different sets of coordinates.
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The fermionic components χa(t, u) and its complex conjugate also satisfy a
complicated harmonic equation, which is the second equation of (35). It may be
simpliˇed by introducing a frame bridge, which is a 2n×2n matrix M satisfying

D++M b
a +

∂L+3c

∂f+a
M b

c = 0. (37)

Then the fermionic ˇeld χa = M
a
b χb is independent of harmonic variables,

D++χa = 0, and thus depends only on time. The frame bridge is used to deˇne
the harmonic independent vielbeins e

ka
ib as

∂f+a

∂f ib
Ma

a = −e
ka
ib u+

k , (38)

as well as the symplectic metric

Gab =
∫

du (M−1)a
a(M−1)b

b(∂+[a∂−b]L + . . .). (39)

One ˇnally gets the local expression for the Riemannian metric on the manifold

gia kb = Gcdεlte
lc
iae

td
kb. (40)

Notice that the tangent space metric Gcd is not constant, so the vielbeins e
ka
ib

do not deˇne an orthonormal frame. On the contrary, complex structures are
constant in the tangent space and read in the coordinate space as

(J(lk))ia
jc = ieia

(lbe
tb
jcεk)t. (41)

Finally, the component action reads

S =
∫

dt

[
1
2

gia kb ḟ iaḟkb − i

4
G[a b]

(
∇χ̄aχb − χ̄a∇χb

)
−

− 1
16

(
εi k∇i[a∇kb] G[c d]

)
χ̄aχ̄bχcχd

]
.

The salient points of the results that were obtained in [1] are that complex
structures form a quaternionic algebra, that they are covariantly constant and that
torsion is in general not closed. A geometry with such properties was called weak
HKT in a paper by P.Howe and G. Papadopoulos in 1996 [13]. A novel feature
which is brought in by the harmonic superspace approach is that this weak HKT
geometry is solved in terms of two unconstrained prepotentials, the general one
L(f+, f−, u±) and the analytic one L+3a(f+, u±).
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Some particular cases may arise. If the Lagrangian in (32) is quadratic,
L = Ωabq

+aq−b, then the torsion is closed and the geometry is HKT. If, moreover,
the analytic prepotential L+3a is a derivative,

L+3a = Ωab ∂

∂q+b
L+4, (42)

then the geometry is HK. If, however, one restricts the analytic prepotential
as in (42) but keeps a general Lagrangian L, one gets a geometry intimately
connected to the hyper-Kéahler geometry encoded in L+4, but which includes
torsion. In particular, if the manifold has dimension 4, the HKT metric is
conformal to the HK metric, with a conformal factor which is a harmonic function
on the HK manifold (i.e., satisˇes the covariant LaplaceÄBeltrami equation on
this manifold, which just amounts to the torsion closedness condition in this
case) [14]. If the conformal factor is arbitrary, one faces a weak HKT geometry.
In the simplest case L+4 = 0, the metric is conformal to the 	at R

4 metric, while
the torsion closedness condition is just the R

4 Laplace equation for the conformal
factor [4, 15,16].

BEYOND WEAK HKT

Thus, a set of hypermultiplets of the same kind does not allow one to describe
in superspace the most general geometry allowed by N = 4 supersymmetry in
one dimension. We conjecture that the description of this general case requires
the simultaneous use of two different types of hypermultiplets. The automorphism
group of the N = 4 supersymmetry algebra is SO(4) � SU(2) × SU(2). One
of these two SU(2) groups acts on the harmonic variables. One may deˇne two
types of hypermultiplets, depending on which SU(2) group is associated with
harmonic variables. Very probably, when using the two types together, one may
describe the general N = 4 geometry.

A computation in support of this conjecture was done in N = 2 super-
space [1]. Starting from chiral superˇelds zα, ya (α = 1, . . . , 2n, a = 1, . . . , 2m),
one can write 2 extra supersymmetry transformations as

δzα = εJα
β Dzβ, δya = ε̄J̃a

b Dub.

Then the z coordinates and the y coordinates belong to different (4,4,0) rep-
resentations of N = 4 supersymmetry. We have checked that, generically, the
complex structures (in the full target space of complex dimension 2(n + m)) do
not form the quaternionic algebra, and only symmetrized covariant derivatives
of complex structures vanish. It remains to show that one indeed can get the
most general geometry in this way. For the particular case of two linear (4,4,0)
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multiplets of different sorts (thus corresponding to 8-dimensional target space),
the most general component action was constructed in [17], proceeding from
N = 4 superˇeld formalism. The set of relevant target metrics encompasses
some examples which were explicitly given earlier in [18] and were argued in [4]
to correspond to the general geometry.
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