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SUPERSYMMETRIC RENORMALIZATION
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The functional renormalization group equation for the quantum effective action is a powerful
tool to investigate nonperturbative phenomena in quantum ˇeld theories. We discuss the application
of manifest supersymmetric �ow equations to the N = 1 WessÄZumino model in two and three
dimensions and the linear O(N) sigma model in three dimensions in the large-N limit. The former
is a toy model for dynamical supersymmetry breaking, the latter for an exactly solvable ˇeld theory.
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INTRODUCTION

Supersymmetry (SUSY) is an important ingredient for most theoretical de-
velopments beyond the Standard Model, including supergravity and string theory.
To study SUSY ˇeld theories at intermediate and strong couplings, nonperturba-
tive methods are required. Unfortunately, most methods are either perturbative or
break SUSY explicitly. For example, any lattice regularization breaks supersym-
metry and one needs to ˇne-tune the bare parameters to recover supersymmetry
in the continuum limit [3Ä5,8]. Only for particular SUSY models with extended
supersymmetry one may ˇnd a nilpotent combination of the supercharges and
this nilpotent charge may be used to recover a supersymmetric continuum limit.
Clearly what we need is an alternative, universally applicable and complementary
nonperturbative method. In the past functional renormalization group methods
have been successfully applied to many problems in strongly coupled quantum
ˇeld theories [1, 2, 6, 10], and thus we decided to adapt functional method to
supersymmetric systems. Actually, it is possible to formulate renormalization
group equations in superspace, such that the �ow equations yield supersymmetric
effective actions on all scales [11,12]. Here we consider supersymmetric Yukawa
models built from a real superˇeld Φ(x, θ) = φ(x)+θγ∗ψ(x)+(1/2)(θγ∗θ)F (x)
consisting of a scalar ˇeld φ, a Majorana spinor ψ and an auxiliary ˇeld F .
The (super)covariant derivatives acting on Φ are given by D = ∂/∂θ + i(γμθ)∂μ

and D = −∂/∂θ − i(θγμ)∂μ. For more details, we refer to our previous works
on WessÄZumino models in [7, 9, 13,14].
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The functional renormalization group can be formulated as a �ow equation
for the effective average action Γk. This scale-dependent functional interpolates
between the classical action S = Γk=Λ at the UV-cutoff Λ and the full quantum
effective action Γ = Γk=0 that includes all quantum �uctuations (see Fig. 1, a).
For a given initial condition ΓΛ at the cutoff the effective average action is
determined by the Wetterich equation [15],

∂kΓk =
1
2
STr

{[
Γ(2)

k + Rk

]−1

∂kRk

}
, (1)

where k denotes the momentum scale. Here (Γ(2)
k )ab =

−→
δ

δΨa
Γk

←−
δ

δΨb
is the

second functional derivative of Γk, where the indices a, b summarize all ˇeld
components (internal and Lorentz indices, space-time or momentum coordinates).
Here Ψ denotes the collection of component ˇelds and not the superˇeld. The
�ow equation contains an infrared regulator Rk derived from a cutoff action
quadratic in the ˇelds. A general supersymmetric cutoff action has the form
ΔSk = (1/2)

∫
ddx ΦRkΦ|θγ∗θ, where the supersymmetric regulator is a func-

tion of supercovariant derivatives, Rk ≡ f(Dγ∗D). Using the properties of D and
D̄, one proves that Rk = r1(Δ) + r2(Δ)Dγ∗D. The ˇrst term is a momentum-
dependent mass and the second a kinetic term with momentum-dependent co-
efˇcient. A consistent approximation scheme to solve Eq. (1) is given by an
expansion in supercovariant derivatives of the superˇeld. The truncation of such
an expansion preserves supersymmetry.
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Fig. 1. a) A trajectory of the scale-dependent effective action in theory space. b) The
�ow of the scalar potential of the N = 1 WessÄZumino model in two dimensions with
λ = 0.1 Λ and a2 = 0.3
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1. WESSÄZUMINO MODEL IN TWO AND THREE DIMENSIONS

Let us consider the two- and three-dimensional WessÄZumino model with
one supersymmetry as a toy model for dynamical SUSY breaking [16]. The
action in superspace is given by

S =
∫

ddx

(
−1

2
DΦγ∗DΦ + W (Φ)

)∣∣∣∣
θγ∗θ

. (2)

After eliminating the auxiliary ˇeld F by its algebraic equation of motion the
on-shell action contains a real scalar ˇeld φ with bosonic potential V (φ) =
W ′(φ)2/2 and a Majorana fermion ˇeld ψ with Yukawa-type interaction to the
scalar ˇeld. Unbroken SUSY is characterized by a vanishing ground state energy
and it depends on the superpotential whether SUSY-breaking is possible or not.
For W (φ) ∼ φ2n SUSY is always unbroken, whereas for W (φ) ∼ φ2n+1 SUSY
breaking is possible. We will focus on the more interesting latter case in these
proceedings.

In the lowest order truncation Γk[φ, F, ψ, ψ] =
∫

ddx(−(1/2)DΦγ∗DΦ +
Wk(Φ))

∣∣
θγ∗θ

and in the following we calculate the �ow of the effective superpo-
tential Wk. A nex-to-leading ˇeld independent wave function renormalization Zk

can be implemented via Φ → ZkΦ in the kinetic term, implying a nonvanishing
anomalous dimension η = −∂t ln Z2

k .
The �ow equation for the superpotential is obtained by projecting Eq. (1) onto

the part linear in the auxiliary ˇeld. To allow for spontaneous SUSY breaking,
we consider superpotentials at the cutoff with odd highest power. Actually, the
regulator function r1 amounts to just a φ-independent shift so that we can set it
to zero without loss of generality. Thus, in what follows we choose r1 = 0 and
r2 = (|k/p| − 1) θ(1 − p2/k2) for which the momentum integration can be done
analytically, and the �ow equation simpliˇes to

∂kWk(φ) = −kd−1

Ad

W ′′
k (φ)

k2 + W ′′
k (φ)2

, A2 = 4π, A3 = 8π2. (3)

Expanding the superpotential into a power series, W ′
k = λk(φ2−a2

k)+
∑
n=2

b2n,kφ2n,

the �ow equation turns into an inˇnite system of coupled ordinary differential
equations for the scale-dependent coefˇcients. As initial conditions at the cutoff
we take b2n,Λ = 0 and a double-well potential corresponding to unbroken SUSY.
The �ow of the bosonic potential Vk(φ) = W ′

k(φ)2/2 in two dimensions with
λΛ = Λ/10 and a2

Λ = 3/10 is shown in Fig. 1, b. The �ow of the potential in three
dimensions is very similar. As the scale k is lowered to the infrared, a single-well
potential emerges and we end up in the phase without SUSY. For larger values
of aΛ we end up in the supersymmetric phase. In the supersymmetric phase the
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scalar mass is given by Z4
km2

k,boson = W ′′ 2
k (χmin/Zk) = Z4

km2
k,fermion and in

the broken phase by Z4
km2

k,boson = W ′
k(0)W ′′′

k (0)∼ k1+η/2. We ˇnd that in the
regime with broken SUSY the curvature of the bosonic potential at the minimum
and therefore the bosonic mass goes to zero with the RG scale k as m(k) ∼ k1/ν .
This behavior is governed by a critical exponent ν which obeys the superscaling
relation

ν =
2

d − η
, η = −k∂k ln Z2

k , νd=2 � 1.3, νd=3 � 0.7,

where η denotes the anomalous dimension and d the space-time dimension. We
emphasize that any measurement (e.g., lattice simulations) involves an IR cutoff
(e.g., lattice size). Hence we predict that any measurement will yield a bosonic
mass proportional to the scale provided by this IR cutoff.

The coupling a2
Λ is a control parameter for SUSY breaking in both two and

three dimensions. In Fig. 2 the phase diagram in the control-parameter plane
(λΛ, a2

ΛλΛ) is shown for both cases. As a signal for SUSY breaking we use a
nonvanishing ground-state energy. We ˇnd a maximal value for SUSY breaking
at λΛa2

Λ � 0.263 in two dimensions. This agrees with a qualitative argument
given by Witten [16] that spontaneous SUSY breaking is not possible for large
values of a2

Λ.
Let us turn to a discussion of the ˇxed points. For this we have to rescale

the �ow equation for the superpotential to dimensionless quantities wk(φ) =
Wk(φ)/k and t = ln(k/Λ). In two dimensions the ˇeld φ is dimensionless. The
ˇxed points are characterized by the condition ∂tw∗ = 0. In two dimensions this
leads to a nonlinear ordinary differential equation with a singularity at w′′

k (φ) = 1.
The superpotential has two relevant directions corresponding to the coefˇcients
of the terms φ0 and φ1. As only the second derivative of the superpotential
enters on the right-hand side of Eq. (3), it is sufˇcient to consider the second
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Fig. 2. Phase diagram in two (a) and three dimensions (b)
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derivative of the ˇxed-point equation to get rid of the IR unstable directions. To
leading order of the derivative expansion in two dimensions and with a polynomial
expansion to order 2n, we have 2n non-Gaussian ˇxed points and one Gaussian
ˇxed point. These ˇxed points are labeled by the coupling λ∗

n. As the absolute
value of λ∗

n decreases, the number of IR unstable directions increases. The
largest value of λ∗

n has one IR unstable direction. The real parts of these critical
exponents at truncation order 16 are given in Table 1. The ˇxed points found by a
polynomial expansion correspond to Taylor expansions of periodic solutions with
|w′′(0)| < 2 |λcrit| = 0.982. The IR stable ˇxed point is given by w′′(0) = 2λcrit.

Table 1. The critical exponents of the two-dimensional WessÄZumino model at trun-
cation 2n = 16 for the different non-Gaussian ˇxed-point solutions labeled by the
value of |λ∗|

λ∗ Re (θI) of non-Gaussian ˇxed points, truncation at 2n = 16

±0.9816 −1.54 −7.43 −18.3 −37.3 −68.9 −120 −204 −351
±0.8813 6.16 −1.64 −9.82 −25.6 −52.5 −96.9 −170 −300
±0.7131 21.4 4.37 −1.57 −11.1 −30.1 −63.3 −120 −223
±0.5152 28.7 13.3 3.33 −1.39 -11.6 −32.8 −71.7 −145
±0.3158 20.0 20.0 8.40 2.57 −1.14 −11.6 −34.3 −80.4
±0.1437 11.2 11.2 8.63 5.19 1.95 −0.842 −11.1 −35.7
±0.0322 4.20 4.20 2.86 2.72 2.72 1.47 −0.540 −10.5
±0.0003 1.57 1.57 1.43 1.43 1.14 0.542 0.542 −0.221

In three dimensions there is only one nontrivial ˇxed point (pair), the super-
symmetric analogue of the WilsonÄFisher ˇxed point with a scalar potential that
behaves like V (φ) ∼ φ6 for large values of φ. The critical exponents are listed
in Table 2. Contrary to two dimensions, we observe a rapid convergence of the
critical exponents with increasing order of truncation.

Table 2. The critical exponents at different truncations for the three-dimensional
WessÄZumino model

2n Critical exponents for different truncations
6 −0.799 −5.92 −20.9
8 −0.767 −4.83 −14.4 −38.2
10 −0.757 −4.35 −11.5 −26.9 −60.8
12 −0.756 −4.16 −9.94 −21.4 −43.8 −89.0
14 −0.756 −4.10 −9.13 −18.3 −35.1 −65.4 −123
16 −0.756 −4.08 −8.72 −16.4 −29.9 −52.9 −91.9 −163
18 −0.756 −4.08 −8.54 −15.2 −26.4 −45.0 −75.0 −124 −209

For the three-dimensional model at ˇnite temperatures the integration in the
timelike direction

∫
dp0 is replaced by a summation over Matsubara frequencies.

These sums can be performed analytically. As the Matsubara frequencies are
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Fig. 3. The phase diagram at ˇnite temperatures

different for bosons and fermions, the �ow equation for the ®superpotential¯
obtained from a projection on the bosonic or fermionic part of the �ow equation
differs by a temperature-dependent factor

∂kW ′
k
bos = − k2

8π2
W ′′′

k

k2 − W ′′2
k

(k2 + W ′′2
k )2

× Fbos(T, k), (4)

∂kW ′
k
ferm = − k2

8π2
W ′′′

k

k2 − W ′′2
k

(k2 + W ′′2
k )2

× Fferm(T, k) (5)

with Fbos ∼ T and Fferm → 0 for large temperatures. For high temperatures the
fermions decouple from the �ow as they have no Matsubara zero mode. This
is the manifestation of supersymmetry breaking at ˇnite temperatures caused by
thermal �uctuations. Although SUSY is always broken at ˇnite temperatures, due
to different interactions of fermions and bosons with the heat bath, there is still
the Z2 symmetry. At zero temperature this symmetry is spontaneously broken in
the supersymmetric phase and it is not broken in case supersymmetry is broken.
The �ow equation enables us to study the restoration of Z2 symmetry at ˇnite
temperatures. Figure 3 shows the corresponding phase diagram. The surface on
the left shows the phase boundary in the space spanned by temperature T/Λ and
the value of the couplings (λΛa2

Λ) and λΛ at zero temperature. The curve on the
right shows a slice of the phase boundary for ˇxed λΛ = 0.8. At sufˇciently high
temperature the Z2 symmetry is always restored.

2. LINEAR SIGMA MODELS

As an example of a solvable �ow equation we now discuss the three-
dimensional linear sigma model in the large-N limit. The model is built upon a
real superˇeld Φ with N components

Φi(x, θ) = φi(x) + θ̄ψi(x) +
1
2
θ̄θF i(x).
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The superˇeld deˇnes an O(N)-invariant composite superˇeld R ≡ (1/2)ΦiΦi

withcomponents

R = 
̄ + (θ̄ψi)φi +
1
2

θ̄θ

(
φiFi −

1
2
ψ̄iψi

)
, 
̄ =

1
2
φiφi.

The composite superˇeld is used to deˇne the O(N)-invariant supersymmetric
action

S =
∫

d3x

[
−1

2
ΦiD̄DΦi + 2N W

(
R

N

)] ∣∣∣
θ̄θ

.

Note that the on-shell action contains the bosonic potential V (
̄) = 
̄ W ′ 2 (
̄/N).
Thus, for any polynomial W ′ we ˇnd V (0) = 0 and thus do not expect SUSY
breaking in our RG studies.

In the following, we study the ˇxed-point structure of this model in the limit
of many components N → ∞ [9] and thus consider the rescaled dimensionless
quantities ρ = 8π2
̄/(Nk) and w(ρ) = 8π2W (
̄/N)/k2. We use an optimized
cutoff function r2(p2) = (k/|p|−1)θ(k2−p2) for which the momentum integrals
can be calculated analytically. This leads to the �ow

∂tw − ρw′ + 2w = −
(

1 − 1
N

)
w′

1 + w′2 − 1
N

(w′ + 2ρw′′)
1 + (w′ + 2ρw′′)2

of the dimensionless superpotential. Similar to the bosonic O(N) model, the �ow
receives two speciˇc contributions: one from the N − 1 Goldstone modes (ˇrst
term on the right) and one from the single radial mode (second term on the right).
The terms on the left-hand side encode the canonical scaling of the superpotential
and the ˇelds. In the limit N → ∞ the radial modes decouples and the �ow
equation simpliˇes to

∂tu + ∂ρu

[
1 − ρ − u2 3 + u2

(1 + u2)2

]
= −u,

where we have introduced u = w′ in order to simplify the notation. This nonlin-
ear, ˇrst-order PDE can be solved analytically via the method of characteristics
which yields

ρ − 1
u

− F (u) = G(uet), F (u) =
u

1 + u2
+ 2 arctanu.

As initial condition we have to specify the superpotential u(ρ) at the UV-scale
k = Λ, thus ˇxing the RG time-dependent function G(uet). The ˇxed-point
solution

ρ = 1 + H(u∗) + c u∗, H(u∗) = u∗ F (u∗)
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Fig. 4. Fixed-point solutions in the large-N limit. a) Global solution u∗(ρ), where the axes
are rescaled with x → x/(1 + |x|); b) ˇxed-point solutions u∗(ρ) in the vicinity of the
node ρ = 1. Speciˇc lines refer to |c| = ∞ (horizontal line), |c| = π (green, long-dashed
lines), |c| = (π + 3)/2 (black, full lines) and c = 0 (red, dashed-dotted line)

only depends on the real constant parameter c = G(uet). We conclude that the
theory possesses a one-parameter family of nontrivial ˇxed-point solutions, solely
parametrized by the constant c, representing the inverse of the linear superˇeld
coupling. All solutions have a node at ρ = 1.

As Fig. 4 illustrates, there exist two classes of ˇxed-point solutions. Solution
in the ˇrst class are globally well-deˇned for all values of ρ ∈ (−∞,∞). Solu-
tions in the second class are deˇned only on part of the ρ−u plane. In the weakly
coupled regime, where |c| � π, we ˇnd a unique ˇxed-point solution in the phys-
ical domain ρ � 0. The intermediate coupling regime with (π + 3)/2 � |c| < π
features two ˇxed-point solutions, one with a node at ρ = 1 and one without a
node. However, in the strong coupling regime with |c| < (π + 3)/2 the slope
of the potentials diverges at some ρs > 0 such that the solutions are not deˇned
for all physical ˇelds. Finally, we note that the solution with inˇnitely large
coupling c−1 = ∞ is closely related to the WilsonÄFisher ˇxed point of the 3d
bosonic O(N) model.

In order to determine the universal critical scaling exponents, we consider the
�ow in the vicinity of a ˇxed point, i.e., u(t, ρ) = u∗(ρ) + δu(t, ρ). Linearizing
the �ow equation in δu yields the �uctuation equation and explicit solution

∂t δu =
u∗
u′
∗

(
∂ρ − (u∗u

′
∗)

′

u∗u′
∗

)
δu ⇒ δu(t, u) =

∑
n

Cn eλnt uλn+1
∗ u′

∗, (6)
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where λn denotes the set of possible eigenvalues. Regularity of the perturbations
at ρ = 1 then requires nonnegative integer values for the exponent λn + 1.
Since the critical exponents θn correspond to the negative eigenvalues, we ˇnd
θn = 1 − n, n ∈ N0. Interestingly, we obtained Gaussian critical exponents ∗ for
non-Gaussian ˇxed points.

3. SUMMARY AND OUTLOOK

The formulation in superspace is suitable to extend the functional renormal-
ization group to supersymmetric theories. We were able to derive the phase
diagram for SUSY breaking and to determine the ˇxed point structure in the
local potential approximation with a constant wave function renormalization for
the N = 1 WessÄZumino model in two and three dimensions. We predict a
superscaling relation for the critical exponent corresponding to the ubiquitous IR
unstable direction. Furthermore, we solved the three-dimensional supersymmet-
ric O(N) model exactly in the large-N limit and found a line of non-Gaussian
ˇxed points, parametrized by the linear superˇeld coupling similar to the bosonic
(φ2)3 theory. This line is bounded by the Gaussian ˇxed point corresponding to
vanishing coupling and a ˇxed point characterized by an inˇnitely large linear
coupling and related to the ˇxed point of the 3d nonlinear sigma model as well
as the WilsonÄFisher ˇxed point of the 3d spherical model.
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