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A consistent approach is offered for investigating the temporal dynamics of localized states. It
is based on exactly solvable quantum mechanical models with multiwell potentials and the associate
propagators. The Hamiltonian states with multiwell potentials form an adequate basis for expanding
wave packets (WP) of various types and degrees of localization. Special features of WP tunneling
have been studied with due regard to all Hamiltonian states with symmetric and asymmetric potentials.
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In most cases, theoretical analysis of tunneling transitions in double-well
potentials is carried out in the two-mode approximation [1]. The signiˇcant
characteristics in this approach are the energy difference of the ground state and
the ˇrst excited state (Δ = E1 − E0), and also, their wave functions. The use
of this approximation provides explanation for the general properties of tunneling
processes; however, it fails to give interpretation of many ˇne effects [2Ä4].
Besides, the analysis of the processes with multiwell potentials is hampered by
the fact that the models employed operate, as a rule, on phenomenological or
piecewise potentials (e.g., with cross-linked rectangular wells and barriers or
parabolas), which are far from real potentials. It should be noted that there exist
exactly solvable models with multiwell potentials [5Ä7], which can be applied
to describe the tunneling processes. The WP time evolution is described in
terms of the propagators, which take into account the contribution of the whole
Hamiltonian spectrum. In papers [8Ä10], an approach has been proposed to
construct new propagators on the basis of the propagators already known in the
context of supersymmetric quantum mechanics. It is of interest to apply the
mentioned procedure for obtaining propagators in the exactly solvable quantum
mechanical models with multiwell potentials.

The goal of the present work has been to study the peculiarities of localized
state dynamics in multiwell potentials in the consistent approach. Exactly solvable
models obtained in the N = 4 SUSY QM [7] have been used as potentials, both
symmetric and asymmetric, and the WP dynamics is described by means of the
propagators corresponding to these models and calculated in the approach [8Ä10].
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1. N = 4 SUSY QM AND MULTIWELL POTENTIALS

The procedure of constructing Hamiltonians with multiwell potentials in the
N = 4 SUSY QM is considered in detail in [7]. It can be realized through
adding additional levels with the energy ε below the ground state energy E0 of
the basic Hamiltonian H0. In this case the multiwell structure of the potentials
derived will be most indicative for (E0 − ε)/E0 � 1. The super-Hamiltonian of
N = 4 SUSY QM comprises three nontrivial Hamiltonians (for details, see [7])
H−

+ = H+
− = H0 − ε and H−

− , H+
+ , the spectra of which have an additional

level below the ground state of the original Hamiltonian, and the others are in
coincidence with the states of H0−ε. The Hamiltonian H−

− and its wave functions
are related to H−

+ = H0 − ε and to the initial wave functions as

H−
− = H−

+ − d2

dx2
ln(φ1(x, ε) + φ2(x, ε)),

ψ−
−(x, E) =

1√
2(Ei − ε)

W{ψ−
+(x, Ei), φ(x, ε, 1)}

φ(x, ε, 1)
,

(1)

ψ−
−(x, E = 0) =

N−1

φ(x, ε, 1)
, φ(x, ε, 1) = φ1(x, ε) + φ2(x, ε),

N−2 = − 2W{φ1, φ2}
Δ(+∞, ε) − Δ(−∞, ε)

, Δ(x, ε) =
φ1(x, ε) − φ2(x, ε)
φ1(x, ε) + φ2(x, ε)

,

where φi(x, ε) , i = 1, 2 are the two linearly-independent solutions of the auxiliary
equation H0φ(x) = εφ(x), which are non-negative and show an asymptotic
behavior at x → −∞ φ1(x) → +∞ (φ2(x) → 0), and at x → +∞ φ1(x) → 0
(φ2(x) → +∞); ψ−

+(x, Ei) are the normalized wave functions of the initial

Fig. 1. a) Potential U−
− (ξ) (ω = 1, ν = −0.02) (a), wave functions of the ground state (b),

ˇrst (d) and second (c) excited states. b) Potential U+
+ (ξ, λ + 1) (ω = 1, ν = −0.02,

λ = −0.95)
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Hamiltonian, and W{φ1, φ2} is the Wronskian. At this choice of solutions to the
auxiliary equation we have N−2 = W{φ1, φ2}.

Using the property of form invariance between H+
+ and H−

− [7], we obtain
from (1) the relationships for H+

+ , ψ+
+ by replacement φ(x, ε, 1) → φ(x, ε, λ+1)

= φ1(x, ε) + (λ + 1)φ1(x, ε), where λ is the parameter limited by the condition
λ > −1, and the normalization ground-state constant of H+

+ is equal to N−2
λ+1 =

(1 + λ) N−2.

We shall use the harmonic oscillator (HO) model as a basic Hamiltonian. For
a certain choice of the parameters, (ν, ω, λ), U−

− (ξ), and U+
+ (ξ, λ) as well as the

corresponding wave functions are presented in Fig. 1. It should be noted that in
terms of the dimensionless variable ξ =

√
ω x the only way to vary the form of

the potential is by varying 0 < ε̄ < 1 and −1 < λ. In the case of natural units x,
additionally, the form of the potential (in particular, position of local minima)
can be changed by variation of ω.

2. TIME EVOLUTION OF STATES IN THE N = 4 SUSY QM

If at the initial instant t = 0 the Gaussian WP Φ(x) =
(

ω e2R

π

)1/4

×

× exp
(
−ω

2
(x − ai)

2 e2R
)
, R being the compression parameter, is localized at

the point x = ai, then its time and space evolution can be described by the
relation [11]

Φ (x, t) =

+∞∫
−∞

K (x, t; x0, 0) Φ(x0) dx0,

K (x, t; x0, 0) =
∞∑

n=0

ψn(x) ψ∗
n(x0) e−iEnt.

(2)

K (x, t; x0, 0) is the propagator, the knowledge of which makes it possible to
investigate the localized state dynamics in terms of the potentials of any com-
plexity. We shall brie�y run through the method of deriving the propagators for
exactly solvable models with multiwell potentials in a closed form in the N = 4
SUSY QM, starting from the exactly solvable model with the conˇnement po-
tential. We introduce the notation for the propagators Kσ2

σ1
(x, t; x0, 0) (σi = ±)

that correspond to the Hamiltonians Hσ2
σ1

N = 4 SUSY QM. Now consider
the derivation of K+

+ (x, t; x0, 0) for the Hamiltonian H+
+ . The relationship of

K+
+ (x, t; x0, 0) with the original K−

+ (x, t; x0, 0) for the exactly solvable model
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with the single-well potential has the form

K+
+ (x, t; y, 0) =

1
2
LxLy

+∞∫
−∞

dzK−
+ (x, t; z, 0) G−

+(z, y, ε) +

+
N−2

Λ e−iεt

φ(x, ε, Λ) φ(y, ε, Λ)
, (3)

where Lx =
(

d

dx
− φ′(x, ε, Λ)

φ(x, ε, Λ)

)
, Λ = λ + 1, G−

+(z, y, ε) is the Green function

of the auxiliary equation at energy ε

G−
+(x, y, ε) = − 2

W{fl, fr}
(fl(x, ε) fr(y, ε)θ(y − x)+

+fl(y, ε) fr(x, ε)θ(x − y)) .

According to the earlier introduced notation fl(x, ε) = φ2(x, ε), fr(x, ε) =
φ1(x, ε). After action of the operator Ly and making some small algebraic ma-
nipulations we obtain

K+
+ (x, t; y, 0) =

−1
φ(y, ε, Λ)

×

× Lx

⎡
⎣Λ

y∫
−∞

dz K−
+ (x, t; z, 0) φ2(z, ε) −

∞∫
y

dz K−
+ (x, t; z, 0) φ1(z, ε)

⎤
⎦+

+
N−2

Λ e−iεt

φ(x, ε, Λ)φ(y, ε, Λ)
. (4)

In case of choosing H−
+ as the HO Hamiltonian, K−

+ (x, t; y, 0) has the following
form [11]:

K−
+ (x, t; y, 0) =

(
ω e−iπ(1/2+n)

2π sinωτ

)1/2

×

× exp
{

iω

2 sinω t

[(
x2 + y2

)
cosω t − 2xy

] }
, (5)

where (t = nπ/ω + τ , n ∈ N0; 0 < τ < π/ω, and φ1(ξ, ε̄) = Dν(
√

2ξ),
φ2(ξ, ε̄) = Dν(−

√
2ξ). Relations (1), (2), (3) and (5) are basic for investigating

the peculiarities of localized state dynamics in the cases of both symmetric and
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asymmetric multiwell potentials. In the process, the contributions of all the
states of the Hamiltonian that form the localized state Φ(x, 0) are taken into
account. K−

− (x, t; y, 0) is obtained from (3) at Λ (ε, λ) = 1 and corresponds to
the symmetric potential case.

3. LOCALIZED STATE DYNAMICS IN MULTIWELL POTENTIALS

In the present paper, attention focusses on the case, where only a few Hamil-
tonian levels are below the barrier. The above-discussed approach makes it
possible to consider the peculiarities of the localized state dynamics with due
regard to all the levels of the exactly solvable Hamiltonian with both symmetric
and asymmetric multiwell potentials. We note that the consideration of the WP
dynamics cannot be reduced to the two-mode approximation even in the R = 0
case. A good approximation of the initial localized state is attained with consider-
ation of eight states of the Hamiltonian H−

− (see the Table). We shall compare the

State number 0 1 2 3 4 5 6 7 8
λ = 0, R = 0 0.668 Ä0.664 0.018 0.017 0.048 Ä0.146 0.203 Ä0.184 0.110
λ = 0, R = 0.35 0.682 Ä0.692 0.135 Ä0.082 0.056 Ä0.069 0.094 Ä0.090 0.044
λ = −0.95, l 0.208 Ä0.945 0.179 Ä0.105 0.065 Ä0.066 0.077 Ä0.060 0.013
λ = −0.95, r 0.941 0.213 0.038 0.011 Ä0.007 0.011 0.066 0.128 0.153

results of exact calculation with |Φ(ξ, T )| =
∣∣∣∣
nmax∑
n=0

cn ψ
(−)+
(−)+(ξ, En) exp (−iEnT )

∣∣∣∣
(T = ω t, ξ =

√
ω x) to demonstrate the efˇciency of the basis of states H−

−
(
H+

+

)
in the problem considered. Figure 2 shows the |Φ (ξ, T )| values for the cases,
where the parameters of potentials U−

− (ξ) and U+
+ (ξ, λ) correspond to the ones

given in Fig. 1, and the WP compression parameter is R = 0.35, this correspond-
ing to the case of weak localization. Initially (T = 0), the WP concentrates in the
left local minimum. The WP dynamics includes slow tunnel transitions of subbar-
rier states and ®beats¯ speciˇed by above-barrier levels, which form the localized
state. In the symmetric potential case, the |Φ (ξ, T )| variation (Fig. 2, a) has a pro-
nounced ®oscillatory¯ character. In this case, the contribution of higher excited
states to |Φ (ξ, T )| is comparatively inconsiderable and results in insigniˇcant
®beats¯. The situation is quite different when the WP is originally concentrated
in some local minimum of U+

+ (ξ, λ) (Fig. 2, b). In the process of time evolution,
the fraction of the tunneling WP to the other local minimum is relatively small.
This is due to the fact that the highest contribution to Φ (ξ, 0) in the left local
minimum (ξl = −2.153) of U+

+ (ξ, λ) comes from the ˇrst excited state of H+
+ ,

the wave function of which in the right well is very small. In other words, as
a result of time evolution, the contribution of this state to the tunnel transition
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Fig. 2. Behavior of |Φ(ξ, T )| at the initial localized-state position in the left local minimum
with R = 0.35: a) (ξl = −2.29) of the potential U−

− (ξ), b) (ξl = −2.153) of the potential
U+

+ (ξ, λ), λ = −0.95

is low. A similar situation is observed when originally the WP is concentrated
in the right local minimum (ξr = 2.755) of U+

+ (ξ, λ). In a certain sense, as a
result of time evolution, the WP is partially conˇned in the original well. The
mechanism of partial WP ®closure¯ in the original well is rather simple, i.e., if
the major contribution to Φ (ξ, 0) in one of the local minima comes from one of
the subbarrier states, then its wave function value in the other well is very low.
It follows that its contribution at tunneling to the other well is small. The other
subbarrier states contribute little to the tunnel transitions owing to the smallness
of their contribution to the Φ (ξ, 0) formation. Note that here the contribution by
higher excited states is more considerable than in the symmetric potential case.

CONCLUSIONS

The present paper has proposed an approach for investigating the dynamics of
initially localized states. It is based on exactly solvable quantum-mechanical mod-
els with multiwell potentials and the corresponding exact propagators. With the
use of the harmonic oscillator Hamiltonian as an initial one within the framework
of N = 4 SUSY QM, Hamiltonians with multiwell potentials, both symmetric and
asymmetric, as well as the corresponding propagators, have been obtained. The
study into the dynamics of initially localized states in this model has demonstrated
that the range of applicability of the two-mode approximation for describing the
tunneling processes is very limited. It is necessary to point out the adequacy
of states of the Hamiltonians H−

− and H+
+ as the basis for the localized state

expansion Φ (ξ, 0) . The WP dynamics includes a slow process of subbarrier state
tunneling and fast oscillations (beats) caused by above-barrier states. At low
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compression parameter values (R = 0.35), the amplitude of beats is compar-
atively small. In symmetric double-well case, variations in |Φ(ξ, T )| have the
®Josephson¯ character. In the asymmetric potential case, the dynamics of the
WP, ˇrst localized in one of the U+

+ (ξ, λ) minima, has a number of peculiarities.
The effect of partial WP ®conˇning¯ in the original well is observed, which is
characterized by suppression of tunneling transitions to the other well. Note that
the effect takes place no matter in which of the minima the WP is originally
localized. In the case of the initial state, which is uniformly distributed in both
the local minima of U+

+ (ξ, λ) , the phenomenon takes place in the deeper well.
That is, the tunnel transitions from a deeper well to a less deep well are far less
intense than the inverse process.

The research was supported in part by the Joint DFFD-RFBR
Grant # F40.2/040.
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