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The paper presents short historical reviews of the processes of lepton-pairs production in pe-
ripheral interaction of leptons and ions at high energies. The orders of magnitude of the QED and
QCD cross sections with the production of two and three jets are given. The technique of the analysis
is described in detail based on the parameterization of Sudakov 4-momentum tasks and writing the
amplitude in an explicit gauge-invariant form. Based on this formalism, the differential cross sections
of the QCD processes gp → (ggg)p; qp → (qQ̄Q)p; gp → (gQQ̄)p were obtained, including
the distribution on transverse momentum component of jets fragments. It was shown that the role
of the contribution of ®non-Abelian¯ nature may become dominant in a particular kinematics of the
ˇnal particles. The kinematics, in which the initial particle changes the direction of motion to the
opposite one, was considered in the case of heavy quarkÄantiquark pair production. In the appen-
dices, the details of the calculations and the explicit form of the differential cross sections are given.
Some extended comments on the frequently used cross sections of the pair production in the case of
two-photon scattering are presented. In particular, the degree of the longitudinal polarization of the
positron, at the interaction of polarized initial electron, was calculated. The method of calculating the
cross sections of the 2 → 2 processes in QCD, based on the isolation of irreducible color structures,
and the method CALCUL of spiral amplitudes were discussed in detail.

„ ´ ±· É±¨° ¨¸Éμ·¨Î¥¸±¨° μ¡§μ· ¶·μÍ¥¸¸μ¢ ·μ¦¤¥´¨Ö ²¥¶Éμ´´ÒÌ ¶ · ¶·¨ ¶¥·¨Ë¥·¨Î¥-
¸±μ³ ¢§ ¨³μ¤¥°¸É¢¨¨ ²¥¶Éμ´μ¢ ¨ ¨μ´μ¢ ¶·¨ ¢Ò¸μ±¨Ì Ô´¥·£¨ÖÌ. �·¨¢¥¤¥´Ò ¶μ·Ö¤±¨ ¢¥²¨Î¨´
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¸¥Î¥´¨Ö ¶·μÍ¥¸¸μ¢ Š•„ gp → (ggg)p; qp → (qQ̄Q)p; gp → (gQQ̄)p ¨ ¤·., ¢ Éμ³ Î¨¸²¥
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¢±² ¤  ®´¥ ¡¥²¥¢μ°¯ ¶·¨·μ¤Ò ³μ¦¥É ¸É ÉÓ ¤μ³¨´¨·ÊÕÐ¥° ¢ μ¶·¥¤¥²¥´´μ° ±¨´¥³ É¨±¥ ±μ´¥Î´ÒÌ
Î ¸É¨Í. � ¸¸³μÉ·¥´  ±¨´¥³ É¨± , ¢ ±μÉμ·μ° ´ Î ²Ó´ Ö Î ¸É¨Í  ¨§³¥´Ö¥É ´ ¶· ¢²¥´¨¥ ¤¢¨¦¥´¨Ö
´  μ¡· É´μ¥ ¢ ¸²ÊÎ ¥ ·μ¦¤¥´¨Ö ÉÖ¦¥²μ° ±¢ ·±- ´É¨±¢ ·±μ¢μ° ¶ ·Ò. ˆ¸¸²¥¤μ¢ ´  ±¨´¥³ É¨± 
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¤¢ÊÌËμÉμ´´μ£μ · ¸¸¥Ö´¨Ö. ‚ Î ¸É´μ¸É¨, ¢ÒÎ¨¸²¥´  ¸É¥¶¥´Ó ¶·μ¤μ²Ó´μ° ¶μ²Ö·¨§ Í¨¨ ¶μ§¨É·μ´ 
¶·¨ ¢§ ¨³μ¤¥°¸É¢¨¨ ¶μ²Ö·¨§μ¢ ´´μ£μ ´ Î ²Ó´μ£μ Ô²¥±É·μ´ . „¥É ²Ó´μ · ¸¸³μÉ·¥´Ò ³¥Éμ¤ · ¸-
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Î¥É  ¸¥Î¥´¨° ¶·μÍ¥¸¸μ¢ 2 → 2 ¢ Š•„, μ¸´μ¢ ´´Ò° ´  ¢Ò¤¥²¥´¨¨ ´¥¶·¨¢μ¤¨³ÒÌ Í¢¥Éμ¢ÒÌ
¸É·Ê±ÉÊ·, ¨ ³¥Éμ¤ CALCUL ¸¶¨· ²Ó´ÒÌ  ³¶²¨ÉÊ¤.

PACS: 12.20.-m; 12.38.-t

INTRODUCTION

It is known [1] that the differential cross sections of small-angle elastic (and
inelastic) scattering processes do not fall with increasing the center-of-mass total
energy

√
s, s = 4E2. The reason for this is the contribution to the cross section

from the photon exchange between charged particles. Similar phenomena take
place as well in the strong interaction sector, where gluons take place instead of
a photon.

The simplest processes of this kind are the scattering of a charged particle
in the external ˇeld of nuclei and the elastic scattering of one sort of charged
particles on the other one. The total cross sections of these processes do not
exist due to contributions of large impact parameters, which correspond to small
scattering-angles. The momentum of the virtual photon in the scattering channel
(t channel) tends to the mass shell. So the virtual photon in the t channel becomes
a real one. In the case of inelastic processes a + b → a + b + X , with the set
of particles x belonging to one of the directions in the center of mass a or b,
the cross sections are ˇnite [2Ä9]. Besides, the square of 4-momentum of a
virtual photon is negative and restricted from below by the magnitude of some
quantity of the created set of particles, invariant mass square of (ax), (bx). The
ˇniteness of the transfer momentum module caused the so-called WeizséackerÄ
Williams enhancement [7]. Namely, the region of small momentum transfer is
realized in the appearance of a large logarithmic factor L = ln (s2/(m2

1m
2
2)).

For modern colliders, this factor is of an order of 20. It often turns out that the
consideration is restricted to the WW approximation. This means the accuracy of
the order of 1+ O(1/L). The cross sections of inelastic peripheral processes are,
as usuall, large.

The background caused by the events of the large-angle kinematics of pro-
duced particles determines the accuracy of peripheral cross sections

1 + O

(
α

π
,
m2

s

)
. (1)

So, the total accuracy of theoretical estimates is better than 5%.
The cross sections of interaction of photons with the target will also not

fall with energy when taking into account the contributions of higher orders of
perturbation theory (PT).

The main attention in our paper is paid to the double gluon emission and
production of the pair of heavy quarks with subsequent jet production, in the
fragmentation region of the incident particle.
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Our paper is organized as follows.
First, we give an estimation of the magnitudes of the cross sections of

several processes in high-energy ep → (eab)p, qp → (qab)p collisions in the
fragmentation region of a projectile e, q. In Sec. 1, we give a short historical
introduction to the study of the processes of lepton-pair production in high-
energy leptonÄlepton, ionÄion collisions. In the attached Appendices we do
comments to these results. In Sec. 2, the so-called ®inˇnite momentum frame¯
method of description of high-energy processes based on the Sudakov para-
meterization of the 4-momenta of the problem is developed. The differential
cross sections are expressed in terms of physically measurable energy fractions
and the transverse component of the ˇnal particles. In Sec. 3, the simplest
QCD processes with 2-jet production are presented. In Sec. 4, we consider the
process of heavy quarkÄantiquark pair production in collisions of projectile with
the colorless target. In Sec. 5, the QED process of double bremsstrahlung is
studied. In Sec. 6, a similar QCD process of emission of two gluons is con-
sidered. In Sec. 7, the speciˇc details of jet production on a ˇxed target are
considered.

In Conclusion, we discuss the results and pay attention to the relation of the
contributions of Abelian (QED) and non-Abelian nature. It seems that in the
case of large magnitudes of transverse quark momenta, the role of non-Abelian
contributions dominates. In Conclusion, we also discuss the ®jet re	ection¯
phenomena. It consists in the change of the direction of motion of the light
projectile to the opposite one in the case of heavy-pair production.

In Appendices AÄC, the explicit expressions beyond the WW approximation
as well as in the WW ones are presented. In Appendices D, E, we give a
short derivation of the famous formulae for the light- and heavy-pair production
in leptonÄ(anti)lepton collisions. In Appendix F, we develop the method of
description of heavy object production in the fragmentation region of one of
projectiles. In Appendix G, this method is applied to the problem of transmission
of the longitudinal polarization of the initial electron to the positron from the
pair created. Appendix H contains the detailed derivation of the amplitudes and
the differential cross sections of the simplest QCD 2 → 2 processes. The chiral
amplitudes method is essentially used.

The cross section of the heavy-pair production in electronÄproton and quarkÄ
proton collisions can be written as

σep→(eQQ̄)p ≈ α4Lq

πM2
Q

≈ 4.8 pb;

(2)

σqp→(qQQ̄)p ≈ α2α2
sLq

πM2
Q

≈ 20 nb.
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We put here
√

s = 3 TeV, MQ = M = 1.5 GeV. In this case Lq ≈ 30. For a
process of two-photon and two-gluon production we have

σep→(eγγ)p ≈ α4Lq

πk2
≈ 10.8 pb;

(3)

σqp→(qgg)p ≈ α2α2
sLq

πk2
≈ 50 nb, k2 = 1 GeV2

for typical transfer momentum squared k2 = 1 GeV2.

1. QED PERIPHERAL PROCESS, PAIR PRODUCTION

In 1934, the cross section of pair production in high-energy lepton collisions
was calculated in the so-called double-WW approximation [8]

σēe→ēel̄l =
28α4

27πm2
l

(
ln

(
s

m2
e

))2

ln
(

s

m2
l

)
, l = e, μ, s = 4E2. (4)

In 1937, G. Racah [9] published the total cross section of the process of pair
creation in the collision of charged particles with the charges Z1e, Z2e; p1, p2 Å
the 4-momenta and m1, m2 Å masses of the initial particles:

σZ1Z2→Z1Z2e+e− =
28(Z1Z2α

2)2

27πm2
e

(l3 − Al2 + Bl + C), l = ln
2p1p2

m1m2
,

A =
178
28

≈ 6.36, B =
1
28

(7π2 + 370) ≈ 15.7, (5)

C = − 1
28

[
348 +

13
2

π2 − 21ξ(3)
]
≈ −13.8, ξ(3) = 1.202.

In papers by Baier and Fadin [10] as well as Lipatov and Kuraev [11], the total
cross section of the production process of an electronÄpositron pair in electronÄ
positron collisions (only two exchanged photons) was obtained

σe±e−→e±e−e+e− =
α4

πm2
e

[
28
27

ρ3 − 178
27

ρ2 −
(

164
9

π2

6
− 490

27

)
ρ +

+
401
9

ξ(3) +
52
3

π2

6
ln 2 +

916
27

π2

6
− 676

27

]
≈

≈ α4

πm2
e

[1, 03ρ3 − 6.6ρ2 − 11.7ρ + 104], ρ = ln
s

m2
e

. (6)
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In the case of production of a muon pair we obtain

σe±e−→e±e−μ+μ− =
α4

πm2
μ

[
28
27

ρ3 − 178
27

ρ2 −
(

535
81

+
14
3

π2

6

)
ρ +

28
9

ρ2l+

+
14
9

ρl2 − 562
27

ρl − 64
9

l2 −
(

56
9

π2

6
− 5855

162

)
l − 7ξ(3) +

214
27

π2

6
+

51403
486

]
≈

≈ α4

πm2
μ

[1, 03ρ3 + 26.6ρ2 − 56ρ− 342],

ρ = ln
s

m2
μ

, l = ln
m2

μ

m2
e

≈ 10.7, ξ(3) = 1.202. (7)

These formulae are in agreement with ones obtained by G. Racah [9]. The
method used to obtain the cross section consists in imposing some cuts on the
transverse momenta and energy fractions, which in principle can be used in
experiment. Adding separate contributions, we obtain the results given above. In
Appendix A, we give the sketch of derivation of the LL formula and discuss the
experimental cuts.

Note that in the case of production of a heavy-muon pair, the corrections of
the order (m2

μ/s)Ln must be taken into account. Really, for
√

s < 1 GeV, the
cross section calculated theoretically is negative.

In 1970, in paper by Brodsky, Kinoshita, and Terazawa, a special case of
production of a heavy object by two virtual photons in electronÄelectron collisions
was investigated [12]:

σ(s)ee→eeF =
(α

π

)2
(

ln
E

me

)2
∞∫

4M2

ds1

s1
σγγ→F (s1)f

(s1

s

)
, (8)

with 2M being the mass of a created system and

f(z) = (2 + z)2 ln
1
z
− 2(1 − z)(3 + z). (9)

The BKT formula in the modern language desribes the DrellÄYan process. Really,
it consists in the probability P γ

e to ˇnd the virtual photon in the electron:

dW γ
e (k1, β1) ∼ 4πα

dk2
1 · k2

1

(k2
1 + m2

eβ
2
1)2

dβ1

1 − β1
P γ

e , P γ
e =

1 − β1

β2
1

+
1
2
,

and the conversion of these probabilities with the cross section of a hard sub-
process γγ → F (see details in Appendix E).
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In this step, it is useful to keep in mind the following integrals:

1∫
z

dβ1

β1

[
1 − β1

β2
1

+
1
2

] [
1 − α2

α2
2

+
1
2

]
=

1
4z2

f(z), β1α2 = z =
s1

s
. (10)

The parton language can also be applied to describe the processes in the frag-
mentation region. General formula for the cross section for the fragmentation
region is derived in Appendix F. In Appendix G, this formalism is applied to
the problem of transferring the longitudinal polarization of the initial electron to
the positron.

Besides, the two-photon mechanism mentioned above, the so-called ®brems-
strahlung¯ mechanism, must be taken into account. It consists in the emission
of a light-like virtual photon by one of the initial particles with a subsequent
conversion to the lepton pair. When calculating the differential and total cross
sections, the effect of the FermiÄDirac statistics must be taken into account.

Other QED peripheral processes, single and double bremsstrahlung, take into
account the radiative corrections as well as the details of calculation and can be
found in reviews [13Ä15].

It results in a nonleading contribution. Really, the contribution from the
diagram corresponding to the single-photon production mechanism [15] is

σbr = 2
α4

πm2

[(
77
54

π2 − 1099
81

)
ρ− 223

18
ξ(3)− 17

9
π2 ln 2 +

163
108

π2 +
5435
486

]
=

= 2
α4

πm2
(0.5ρ− 1.7), (11)

where factor 2 takes into account both the kinematic situations when a jet moves
along both the initial directions.

The effect of identity of ˇnal particles taken into account, contributes to the
total cross section (both directions are taken into account) [17]

σint = 2
2α4ρ

105πm2

[
−374ξ(3)− 120π2 ln 2 +

13591
90

π2 − 2729
12

]
=

= 2
α4

πm2
(−0.14)ρ, (12)

here σint is the contribution from the interference term associated with the identity
of particles in the ˇnal state.

For electron-pair production and muon-pair production, the speciˇc effect of
the charge-odd contribution to spectral distributions takes place. It is caused by
the interference of 2-gamma mechanism and the bremsstrahlung one.
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Similar effects take place in the process of bremsstrahlung and pair production
by a gluon and a quark on the proton or the nuclei. We will restrict ourselves
below only to the cases when a proton or nuclei remain to be a proton or nuclei.
No excitation of the target is allowed.

In the case of large transverse momenta of the jet particle component, the
subtle effect of the double logarithmic contributions in the fragmentation region
disappears.

2. KINEMATICS OF PERIPHERAL PROCESSES,
SUDAKOV PARAMETERIZATION

First, we remind the general Sudakov technique to study the peripheral kine-
matics of the QED process e+ p → (e+ l + l̄)+ p of creation of a heavy charged
lepton pair in high-energy electronÄproton collisions in the fragmentation region
of the electron,

e(p1) + p(p2) → e(p′1) + l(q−) + l̄(q+) + p(p′2),

p2
2 = p

′2
2 = m2

p, p2
1 = p

′2
1 = m2, q2

± = M2, (13)

s = 2p1p2 � M2 ∼ m2
p � m2.

The peripheral kinematics or the electron fragmentation region is deˇned as

s � −q2 = −(p2 − p′2)
2 ∼ M2. (14)

It is convenient to use the Sudakov parameterization of momenta. For this aim,
we introduce two light-like 4-vectors constructed from the momenta of the initial
particles p̃2 = p2 − p1(m2

p/s), p̃1 = p1 − p2(m2/s) [17]

q = αp̃2 + βp̃1 + q⊥, q± = α±p̃2 + x±p̃1 + q⊥±, p′1 = α′p̃2 + xp̃1 + p⊥,
(15)

a⊥p1 = a⊥p2 = 0, a2
⊥ = −a2 < 0, p̃2

1 = p̃2
2 = 0, 2p1p̃1 = m2,

where a is the two-dimensional vector transversal to the beam axis (direction of
p1, center-of-mass reference frame implied), and x, x± are the energy fractions
of the scattered electron and the heavy-lepton pair, and x+x− +x+ = 1. Below,
we will omit the tilde sign. According to the energy-momentum conservation
law, we also have

q = p + q− + q+, α = α′ + α+ + α− − m2

s
. (16)

The on-mass shell condition for the scattered proton p
′2
2 −m2

p = 0, being written
in terms of the Sudakov variables, reads (one must take into account the relation
2p2p̃2 = m2

p)

(p2 − q)2 − m2
p = sαβ − q2 − m2

pα − sβ = 0, sβ = −
q2 + m2

pα

1 − α
. (17)
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One ˇnds for q2 = sαβ − q2:

q2 = −
q2 + α2m2

p

1 − α
≈ −

(
q2 +

s2
1

s2
m2

p

)
. (18)

We conclude that in the case s1 �= 0, a virtual photon has a space-like
4-vector and, in addition |q2| > q2

min = m2
p(s1/s)2. The quantity s1 = 2qp1 =

(p′1 + q+ + q−)2 − q2 −m2 = sα in the WW approximation q = 0 coincides with
the square of the invariant mass of the jet moving in the initial quark momentum
direction. Using the on-mass shell conditions for momenta of the scattered muon
and the created pair of heavy quarks,

p
′2
1 = sα′x − p2 = m2

q = m2, q2
± = sα±x± − q2

± = M2, x + x+ + x− = 1,
(19)

we ˇnd (in the WW approximation)

s1 = sα =
1

xx+x−
[x−(1 − x−)q2

+ + x+(1 − x+)q2
−+

+ 2x−x+q−q+ + m2x+x− + x(1 − x)M2]. (20)

The matrix element can be written as

M =
(4πα)2

q2
gμνJ (e)

μ (p1)J (p)
ν (p2), (21)

with J (e,p) being the currents associated with electron and proton blocks of the
relevant Feynman diagram. The main contribution arises from the longitudinal
components of the tensor gμν = gμν⊥ + (2/s)(pμ

2pν
1 + pν

2pμ
1 ):

gμν ≈ 2
s
pμ
2pν

1 . (22)

So, we obtain for the squared module of the summed over spin states of the
matrix element ∑

|M |2 = (8πα)2s2 1
(q2)2

Φ(e)Φ(p),

(23)

Φ(e) =
∑ ∣∣∣∣1sJ

(e)
λ pλ

2

∣∣∣∣
2

, Φ(p) =
∑∣∣∣∣1sJ (p)

σ pσ
1

∣∣∣∣
2

.

The quantities Φ(e,p) (the so-called impact factors) remain ˇnite in the limit of
high energies s → ∞. In particular,

Φ(p) =
∑ ∣∣∣∣1s ū(p′2)p̂1u(p2)

∣∣∣∣
2

= 2. (24)
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The electron current obeys the gauge condition

qμJ (e)(p1)μ ≈ (αp2 + q⊥)μJ (e)(p1)μ = 0. (25)

Using this relation we obtain for our process

∑
|M |2 = 2

s2

s2
1

(4πα)2q2

(q2)2
∑ ∣∣∣∣1sJ

(e)
λ eλ

∣∣∣∣
2

, (26)

where e = q/|q| can be interpreted as a polarization vector of the virtual photon.
To obtain the differential cross section,

dσep→(e jetq)p =
1
8s

∑
|M2→2+n|2dΓ2+n, (27)

we must rearrange the phase volume of the ˇnal state (the electron remains to be
a spectator, whereas the scattered muon is accompanied with n particles)

dΓ2+n = (2π)4δ4
(
p1 + p2 − p′1 − p′2 −

∑
qi

)
×

× d3p′1
2E′

1(2π)3
d3p′2

2E′
2(2π)3

Πi
d3qi

2Ei(2π)3
, (28)

including the additional variable q as

dΓ2+n → dΓ2+nd4qδ4(p2 − q − p′2). (29)

We use the Sudakov variables:

d4q =
s

2
dαdβd2q,

d3q±
2E±

=
s

2
dα±dx±d2q±δ(sα±x± − q2

± − M2). (30)

Performing the integrations over the ®small¯ Sudakov variables α, α±, we obtain

dΓ2+n =
1
sx

(2π)4(2π)−3(2+n)2−n−1d2qΠn
1

dxi

xi
d2qi, x +

n∑
1

xi = 1. (31)

It can be noted that the cross section does not depend on s at large s and tends to
zero in the limit of zero recoil momentum of the spectator electron q → 0. The
last property is the consequence of gauge invariance of the theory. Once being
integrated over the recoil momentum, the cross section reveals the so-called WW
enhancement factor

L =

Q2∫
0

q2dq2

(q2 + m2
2α

2)2
= ln

Q2s2

m2
2s

2
1

− 1 = Lq − 1, (32)

where Q2 ∼ M2 is the scale of transfer momentum squared in the process.
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3. 2-JET QCD PROCESSES IN QUARK (GLUON)ÄPROTON COLLISIONS

The differential cross sections of the processes

q(p1) + p(p2) → q(p′1) + g(k) + p(p′2), (33)

e(p1) + p(p) → e(p′1) + γ(k) + p(p′2) (34)

differ only by the color factors from similar expressions in QED.

dσqp→(g,q)p =
N2 − 1

2N
dσep→(eγ)p, (35)

with

dσep→eγp =
2α3d2q d2p′ dxX̄

π2(q2)2(DD′)2
Rγ [1 + ξ3B3 + ξ1B1],

(36)
Rγ = DD′q2(1 + x2) − 2xm2(D − D′)2,

with

B3 =
2x

Rγ
[A2q2 cos (2ϕq) + B2p2 cos (2ϕp) + 2AB|q||p| cos (ϕq + ϕp),

(37)

B1 =
2x

Rγ
[A2q2 sin (2ϕq) + B2p2 sin (2ϕp) + 2AB|q||p| sin (ϕq + ϕp),

and

A =
1
x̄

(D′ − xD), B =
1
x

(D − D′), (38)

and B1,3 are the effective Stokes parameters of a gluon. Besides

D = m2x̄2 + (p − q)2, D′ = m2x̄2 + (p − qx)2, (39)

where p is the transverse component of the scattered electron momentum; q is
the same value for the recoil proton; φp, φq are the azimuthal angles between the
transverse component of a gluon and p,q.

For the process of quarkÄantiquark pair production by a gluon on a proton
we have

dσgp→(QQ̄)p =
1
2

2α3

π2(q2)2
Φγ d2q+d2q dx+,

Φγ =
1

(D+D−)2
{
2m2x+x−(D+ − D−)2 + q2(x2

+ + x2
−)D+D−

}
, (40)

D± = q2
± + m2, q+ + q− = q.

The ˇrst factor is the color factor
1

N2 − 1
N2 − 1

2
=

1
2
.
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4. PRODUCTION OF HEAVY CHARGED LEPTON (QUARK) PAIRS
IN ELECTRON (QUARK)ÄPROTON COLLISIONS

We will distinguish two mechanisms of the heavy-fermion pair creation, the
so-called ®bremsstrahlung mechanism¯ (see Fig. 1, a) and the ®two-photon¯ one
(Fig. 1, b). The matrix element of the process

μ(p1) + Y (p2) → μ(p′1) + Q(q−) + Q̄(q+) + Y (p′2),
(41)

p2
1 = p′21 = m2, p2

2 = p′22 = m2
Y , q2

± = M2

in the kinematic region of μ particle fragmentation can be written as

MμY →(μQQ̄)Y = (4πα)2
2s

q2
N2×

×
[

1
q2
1s

ū(p′1)Qμu(p1)ū(q−)γμv(q+) +
1

q2
2s

ū(q−)Rλv(q+)ū(p′1)γλu(p1)
]
, (42)

q2
1 = (q− + q+)2, q2

2 = (p1 − p′1)
2, N2 =

1
s
l̄2(p′2)p̂1l2(p2).

Fig. 1. Production of heavy-quark pair

Here we adopt Sudakov's parameterization of the 4-vectors

p′1 = α′p2 + xp1 + p⊥, q± = α±p2 + x±p1 + q±⊥, q = αp2 + q⊥. (43)

The ˇrst term in the square brackets contains the Compton subprocess e(p1) +
γ∗(q) → e(p′1) + γ(q1) amplitude ū(p′1)Qμu(p1) with (we use here the on-mass
shell conditions for the initial and ˇnal electrons (quarks))

Qμ =
1
D′ γμ(p̂1 + q̂ + m)p̂2 −

1
D

p̂2(p̂′1 − q̂ + m)γμ =

= s

(
1
D′ −

x

D

)
γμ +

γμq̂p̂2

D′ +
p̂2q̂γμ

D
,
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where we use the notation

D′ = (p1 + q)2 − m2 =
1

xx+x−
d′, D = −[(p′1 − q)2 − m2] =

1
x+x−

d,

d′ = d + x̄x+x−q2 − 2x+x−q(q+ + q−), (44)

d = m2x+x−x̄ + M2xx̄ + q2
+x−x̄− + q2

−x+x̄+ + 2(q+q−)x−x+.

So we obtain

Qμ =
x+x−
dd′

[sxργμ + xdγμ q̂p̂2 + d′p̂2q̂γμ], ρ = d − d′. (45)

The two-photon amplitude contains a Dirac subprocess γ∗(q1)+γ∗(q) → Q(q−)+
Q̄(q+) with the amplitude ū(q−)Rλv(q+)

Rλ = −γλ
q̂ − q̂+ + M

D+
p̂2 − p̂2

q̂− − q̂ + M

D−
γλ. (46)

Again, with on-mass shell conditions for the heavy-fermion pair it can be written
as

Rλ = sγλr1 −
γλq̂p̂2

D+
+

p̂2q̂γλ

D−
, r1 =

x+

D+
− x−

D−
, (47)

with the deˇnitions

D+ = −[(q − q+)2 − M2] =
1

xx−
d+, D− = −[(q − q−)2 − M2] =

1
xx+

d−,

d+ = d + xx+(q2 − 2qq−) + x+x−(q2 − 2q(q+ + q−)),
(48)

d− = d + xx−(q2 − 2qq+) + x+x−(q2 − 2q(q+ + q−)),

q2
2 = (p1 − p′1)

2 = − 1
x

[p2 + x̄2m2], p = q− q− − q+.

With this notation we have

Rλ =
x

d+d−
[sx+x−ρ1γλ − x−d−γλq̂p̂2 + x+d+p̂2q̂γλ], ρ1 = d− − d+. (49)

The square of the matrix element summed over spin states has the form

∑
|MμY →(μQQ̄)Y |2 =

8s2

(q2)2
16(4πα)4RQQ̄, RQQ̄ = Rbr + R2γ + Rodd,

Rbr =
1

s2(q2
1)2

1
4

Sp (q̂− + M)γμ(q̂+ − M)γν
1
4

Sp p̂′1Qμp̂1Q
+
ν ,

(50)

R2γ =
1

s2(q2
2)2

1
4

Sp (q̂− + M)Rμ(q̂+ − M)R+
ν

1
4

Sp (p̂′1 + m)γμ(p̂1 + m)γν ,

Rodd =
2

s2q2
1q

2
2

1
4

Sp (q̂− + M)γμ(q̂+ − M)R+
λ

1
4

Sp p̂′1Qμp̂1γλ.
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It is important to know that all the quantities entering into RqQ̄ do not depend on
s and are proportional to q2 in the WW limit q → 0.

Keeping in mind that in the combinations p̂2q̂ and q̂p̂2 one can replace
q̂ → q̂⊥, one may use the relations needed in calculating the traces (we neglect
the contributions of an order of m2/M2 compared to the ones of an order of
unity)

p2
1 = p′21 = p2

2 = 0, q2
+ = q2

− = M2, q2 = −q2,

2p2p1 = s, 2p2p
′
1 = sx, 2p2q+ = sx+, 2p2q− = sx−, 2p2q = 0, 2p1q = 0,

qq− = −qq−, qq+ = −qq+, qp′1 = −qp,
(51)

2q+p′1=
1

xx+
[x2M2 + (x+p − xq+)2], 2q−p′1=

1
xx−

[x2M2 + (x−p − xq−)2],

2p1p
′
1 = −q2

2 =
1
x
p2, 2p1q+ =

1
x+

[M2 + q2
+], 2p1q− =

1
x−

[M2 + q2
−],

q2
1 =

1
x+x−

[x̄2M2 + r2], r = x−q+ − x+q−, p = q − q+ − q−.

The differential cross sections have the form

dσeY →(eQQ̄)Y =
2α4

π

RQQ̄

(q2)2
dγ4, dγ4 =

dx+dx−
xx+x−

d2q
π

d2q+

π

d2q−
π

. (52)

In the case of processes with a quark instead of a muon, we must take into
account the quark color degrees of freedom

dσqY →(qQQ̄)Y = Ccol
α2

s

α2
dσeY →(eQQ̄)Y , (53)

with Ccol = (N2−1)/(4N2), where we also take into account the averaging over
the color of quarks. The explicit expressions for Rbr, R2γ , Rodd are given in
Appendix B. In the double WW approximation, the contribution to the differential
cross section has the form

dσep→(QQ̄e)p

dx+dx−dz
=

α4L2

πM2
Φ(z, x+, x−), z =

q2
+

M2
. (54)

Exact formulae are given in Appendix B.
The function

Φ
(

z, x+ = x− =
1
3

)
= Φ(z) =

3
8

7 + 268z + 243z2

(1 + z)4

is presented in Fig. 4.
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Table 1. The function A+− (y+, y−) (deˇned in (55)) is presented for different values of
the ˇnal quark (lepton) transverse momenta y+ and y− for the quark-pair (lepton-pair)
production (in units of M )

A+− 0.0279 0.0295 0.0314 0.0326 0.0348 0.0377 0.0405 0.0421 0.0462 0.0513

y+ 4 3 3 2 2 2 1 1 1 1

y− 5 4 5 3 4 5 2 3 4 5

In Table 1, the charge asymmetry deˇned as

A+−(y+, y−, x+, x−) =
[

2
q2
1q

2
2

Rodd
WW

]/[
1

(q2
1)2

Rbr
WW +

1
(q2

2)2
R2g

WW

]
,

(55)

y± =
q2
±

M2

is presented at the symmetric point x = x− = x+ = 1/3, φ = π/2 for several
typical values y+ < y−. This quantity has a value of an order of A+− ∼ 10−2.
For the use of y+ > y−, the quantity A+− changes the sign.

5. DOUBLE BREMSSTRAHLUNG
IN ELECTRONÄPROTON COLLISIONS

In the lowest order of perturbation QED theory there are 20 Feynman dia-
grams describing the double bremsstrahlung process (see Fig. 3)

e(p1) + p(p2) → e(p′1) + γ(k1) + γ(k2) + p(p′2), (56)

i.e., emission of two hard photons in collisions of the high-energy electron with
a charged heavy target (heavy lepton). We will restrict ourselves to the con-
sideration of the emission from the electron line only. The set of six Feynman
diagrams provides the gauge-invariant set (see Fig. 1, a, b). With respect to the
exchanged photon they split into two independent subsets of Feynman amplitudes,
both gauge-invariant. The relevant matrix element is

M ep→(eγγ)p =
2s(4πα)2

q2
N

1
s
ū(p′1)[O12 + O21]u(p1), (57)

with (see details in Appendices C, D),

O12 =
1

(1)D
N1 −

1
(1)(2′)

N2 +
1

(2′)D′ N3,

N1 = p̂2(p̂′1 − q̂ + m)ê2(p̂1 − k̂1 + m)ê1,
(58)

N2 = ê2(p̂′1 + k̂2 + m)p̂2(p̂1 − k̂1 + m)ê1,

N3 = ê2(p̂′1 + k̂2 + m)ê1(p̂1 + q̂ + m)p̂2,
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and

O21 =
1

(2)D
N ′

1 −
1

(2)(1′)
N ′

2 +
1

(1′)D′ N
′
3,

N ′
1 = p̂2(p̂′1 − q̂ + m)ê1(p̂1 − k̂2 + m)ê2,

N ′
2 = ê1(p̂′1 + k̂1 + m)p̂2(p̂1 − k̂2 + m)ê2, (59)

N ′
3 = ê1(p̂′1 + k̂1 + m)ê2(p̂1 + q̂ + m)p̂2,

N =
1
s
Ȳ (p′2)p̂1Y (p2).

Here ei = ei(ki) are the polarization vectors of hard photons. It can be checked
that the expression for M2Y →(2γγ)Y turns to zero in replacing p2 → q as well as
ei → ki which is the consequence of gauge invariance.

We adopt below the Sudakov parameterization of the relevant 4-vectors

q = αp2 + q⊥, ki = αip2 + xip1 + ki⊥,
(60)

p′1 = α′p2 + xp1 + p⊥,

and use the notation and relations (different compared to the previous section)

(1) = 2p1k1 =
1
x1

[m2x2
1 + k2

1] =
y1

x1
, (2′) = 2p′1k2 =

1
xx2

[m2x2
2 + r2

2] =
z2

xx2
,

(2) = 2p1k2 =
1
x2

[m2x2
2 + k2

2] =
y2

x2
, (1′) = 2p′1k1 =

1
xx1

[m2x2
1 + r2

1] =
z1

xx1
,

D = −[(p′1 − q)2 − m2] =
d

x1x2
, D′ = (p1 + q)2 − m2 =

1
xx1x2

d′,

r2 = x̄1k2 + x2(k1 + q), r1 = x̄2k1 + x1(k2 + q),
(61)

d′ = d + q2x̄x1x2 − 2x1x2q(k1 + k2),

d = m2x1x2x̄ + x1x̄1k2
2 + x2x̄2k2

1 + 2x1x2k1k2,

2k1k2 =
1

x1x2
(x2k1 − x1k2)2, 2p1p

′
1 =

1
x

[p2 + m2x2],

(1) + (2) + (1′) + (2′) = D + D′.

The expression for the matrix element given above can be written in a form
to display the explicit gauge invariance, which is suitable especially for
investigation in the (WW) [7] approximation. For this aim we note that
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the combinations

R1 =
x

(1)D
− x̄1

(1)(2′)
+

1
(2′)D′ ,

R2 =
x

(2)D
− x̄2

(2)(1′)
+

1
(1′)D′ , (62)

r =
1
D′ −

x

D

turn to zero in the limit q → 0. Excluding the term containing the denomina-
tor (1), (2) we can rewrite the expression for O12 in the form

O12 =
1
x̄1

[R1ê2(p̂′1 + k̂2 + m)p̂2(p̂1 − k̂1 + m)ê1 + rê2p̂2ê1+

+ c1ê2(p̂′1 + k̂2 + m)[x̄1ê1q̂p̂2 + p̂2q̂ê1]+

+ d1[x̄1p̂2q̂ê2 + xê2q̂p̂2](p̂1 − k̂1 + m)ê1], (63)

with

r =
xx1x2

dd′
ρ, ρ = d − d′ = x1x2[−x̄q2 + 2q(k1 + k2)],

(64)

c1 =
x1(xx2)2

z2d′
, d1 = −x2x

2
1

y1d
.

A similar expression for the set of other Feynman diagrams (can be obtained from
the ˇrst one by the replacement k1, e1 ↔ k2, e2) is

O21 =
1
x̄2

[R2ê1(p̂′1 + k̂1 + m)p̂2(p̂1 − k̂2 + m)ê2 + rê1p̂2ê2+

+ c2ê1(p̂′1 + k̂1 + m)[x̄2ê2q̂p̂2 + p̂2q̂ê2]+

+ d2[x̄2p̂2q̂ê1 + xê1q̂p̂2](p̂1 − k̂2 + m)ê2], (65)

with

c2 =
x2(xx1)2

z1d′
, d2 = −x1x

2
2

y2d
. (66)

The matrix element squared summed over spin states is

∑
|M ep→(eγγ)p|2 =

32(4πα)4s2

π(q2)2
Rγγ ,

(67)

Rγγ = (1 + P12)
1

4s2
Sp [p̂′1O12p̂1O

+
12 + p̂′1O12p̂1O

+
21].
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From a topological point of view, it is convenient to write down Rγγ as a sum
of planar and nonplanar Feynman diagrams for the cross section

Rγγ = (1 + P12)[Rpl + Rnpl]. (68)

The differential cross section has the form

dσep→(eγγ)p =
1
2!

α4

2π

Rγγ

(q2)2
dγ4,

(69)

dγ4 =
dx1dx2

xx1x2

d2q
π

d2k1

π

d2k2

π
.

Factor 1/2! takes into account the identity of photons in the ˇnal state.
In the WW approximation we have

2π
dσep→(eγγ)p

dx1 dx2 dy1 dy2 dφ
=

α4(Lp − 1)
4π

1
M2

Rγγ(y1, y2, x1, x2, φ),

(70)

yi =
k2

i

M2
,

with M being the mass of a heavy quark in the scale parameter for the values of
the transverse momenta of photons (gluons).

6. QUARKÄPROTON COLLISION: EMISSION OF TWO-GLUON JETS

The matrix element of the process of two-gluon jets production in a peripheral
quark-colorless fermion target collision (see Fig. 2),

q(p1) + Y (p2) → q(p′1) + Y (p′2) + g(k1) + g(k2), (71)

has the form

M =
32sααs

q2
JqN, Jq = ū(p′1)Ru(p1), N =

1
s
ū(p′2)Γμu(p2)p

μ
1 ,

(72)
R = O12R2 + O21R1 + (R2 − R1)O3, Γμ = F1γμ + σμνqνF2,

where R1 = (tatb)r2r1 , R2 = (tbta)r2r1 , with r2(r1) describing the color states
of the scattered (initial) quark. Here the quantities O12, O21 were obtained above
(see (59) and (65)), with the replacement k1 → q+, k2 → q−, where we imply
e1 → ea, e2 → eb and

O3 = − 2
q2
1

[
− 1

D
p̂2(p̂′1 − q̂ + m)V̂ ab +

1
D′ V̂

ab(p̂1 + q̂ + m)p̂2

]
,

(73)
V̂ ab = (k1e

b)ea − êb(k2e
a) + k̂2(eaeb), q2

1 = (k1 + k2)2.
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Fig. 2. Emission of two gluons

The quantity q2
1 is presented (26) and (35). It can be checked that the matrix

element obeys gauge invariance, namely, it turns to zero if one replaces p2 → q
and ei(ki) → ki. The expression for the matrix element at R1 = R2 = 1,
coincides with the QED result [21]. Below we will use the expression for O3 in
the form

O3 = − 2
q2
1

x1x2

dd′
[xsρV̂ + d′p̂2q̂V̂ + xdV̂ q̂p̂2],

(74)
V̂ = êa(k1e

b) + k̂2(eaeb) − êb(k2e
a), ρ = 2x1x2qQ.

To work with the irreducible color states, we use the projectors in color space

C1 =
1√

N(N2 − 1)
δabδr2r1 ,

C2 =

√
2N

(N2 − 1)(N2 − 4)
dabc(tc)r2r1 , (75)

C3 = i

√
2

N(N2 − 1)
fabc(tc)r2r1 .
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These projectors obey the equations

CiC̃j =
(

(cab
i )r1r2

((cab
i )r1r2)+ = (cab

i )r2r1

)
, (76)

CiC̃j = δij , i, j = 1, 2, 3. (77)

Here (Ã)r1r2 = (A)r2r1 and summation over a, b is implied.

In our case∗

R1 =

√
N2 − 1

4N

[
C1 +

√
N2 − 4

2
C2 +

N√
2
C3

]
,

(78)

R2 =

√
N2 − 1

4N

[
C1 +

√
N2 − 4

2
C2 −

N√
2
C3

]
.

The expansion on irreducible color representations is

R = C1(RC̃1) + C2(RC̃2) + C3(RC̃3) =

√
N2 − 1

4N
×

×
[(

C1 +

√
N2 − 4

2
C2

)
(O12 + O21) +

N√
2
(O21 − O12 − 2O3)

]
. (79)

So the matrix element squared summed over color and spin states can be
written as

∑
|M |2 =

32s2(16π2ααs)2

(q2)2
N2 − 1

4N
F,

F = FAbel + F non-Abel,
(80)

FAbel =
N2 − 2

2
(1 + P12)(Rpl + Rnpl) +

N2

2
[(1 + P12)(Rpl − Rnpl)],

F non-Abel = 2N2[R33 − R321 + R312],

∗As a check we have (R1R̃1) = (R2R̃2) = Tr tatbtbta = NC2
F ; (R1R̃2) = Tr tatbtatb =

−(1/2)CF . These relations are fulˇlled.
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with

Rpl =
1

4s2
Sp p̂′1O12p̂1O

+
12,

Rnpl =
1

4s2
Sp p̂′1O12p̂1O

+
21,

R33 =
1

4s2
Sp p̂′1O3p̂1O

+
3 , (81)

R312 =
1

4s2
Sp p̂′1O3p̂1O

+
12,

R321 =
1

4s2
Sp p̂′1O3p̂1O

+
21.

In the case x1 = x2 = x = 1/3 and φ = π/2, F non-Abel and F are presented
(see Table 2) for typical values of y1, y2.

Table 2. The functions F non-Abel (y1, y2) and F (y1, y2) (deˇned in (80)) are presented
for different values of the ˇnal gluon transverse momenta y1 and y2

F non-Abel 0.0398 0.0845 0.0561 0.2309 0.1315 0.0812 1.0521 0.4257 0.2074 0.1135

F 0.0415 0.0882 0.0591 0.2422 0.1396 0.0872 1.117 0.4625 0.2306 0.1294

y1 4 3 3 2 2 2 1 1 1 1

y2 5 4 5 3 4 5 2 3 4 5

The differential cross section is

dσqY →(qgg)Y =
(ααs)2

8π

N2 − 1
N2

F

(q2)2
dγ4. (82)

The explicit expressions for F as well as for Rγγ are too cumbersome. Nev-
ertheless, they are suitable for further analytic and numerical integration when
obtaining different distributions.

As some probe of QCD, the quantity

Agg =
F non-Abel

F
(83)

can be considered as a speciˇc for QCD deviation from the QED process of the
double bremsstrahlung. It is presented in Table 3 in the WW approximation for

Table 3. The function Agg (y1, y2) (deˇned in (83)) is presented for different values of
the ˇnal gluon transverse momenta y1 and y2

Agg 0.8396 0.8318 0.8024 0.8167 0.7755 0.7382 0.7755 0.7034 0.6393 0.5805

y1 4 3 3 2 2 2 1 1 1 1

y2 5 4 5 3 4 5 2 3 4 5



JETS PRODUCTION IN PERIPHERAL INTERACTIONS OF HIGH-ENERGY LEPTONS 1885

x = x1 = x2 = 1/3, φ = π/2, for different values y1, y2. For values q2
1 ∼ M2,

the non-Abelian contribution dominates in Agg (see Table 3). For large q2
1 ,

Agg ∼ (M2/q2
1).

7. THREE-JET STRUCTURE IN PERIPHERAL COLLISIONS
ON A FIXED TARGET

In the case of jet production with a projectile on a ˇxed target (nucleon), an
additional wide-angle jet can be created by the recoil target particle.

Consider for simplicity the photoproduction of a pair qq̄ process on a nucleon,

γ(k) + p(p) → q(q−) + q̄(q+) + p′(p′), (84)

s = 2pk, k2 = 0, p = M(1, 0, 0, 0).
As the Sudakov expansion basis we use k = ω(1, 1, 0, 0) and p1 = p −

(M2/s)k = (M/2)(1,−1, 0, 0). For the transferred 4-momentum q = p − p′ we
have

q = αk + βp1 + q⊥. (85)

Solving the on-mass shell condition of a recoil proton we ˇnd

p′21 − M2 = sαβ − q2 − M2β − sα = 0, sα = q2. (86)

Considering its longitudinal and transverse component we have

p′2 = q2 +
1

4M2
|q2|2. (87)

So we have

sin2 θ =
q2

p′2 , (88)

with θ(p′,k), and ∣∣∣∣ p′

M

∣∣∣∣ =
2 cos θ

sin2 θ
. (89)

The recoil jet penetrates in a rather wide cone θ ∼ 60◦. Relation (72) was ˇrst
obtained in [28].

8. THE PROCESS gP → (gQ̄Q)P

Another process where the non-Abelian structure of QCD manifests itself is
the crossing process to one considered in Sec. 3

g(k) + P (p2) → (Q̄(q+)Q(q−)g(k1))P (p′2). (90)
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The matrix element can be written as

M1 = (M (1)
1 + M

(2)
1 + M

(3)
1 + M

(4)
1 + M

(5)
1 + M

(6)
1 + M

(7)
1 + M

(8)
1 )μν ,

(91)
M2 = (M (1)

2 + M
(2)
2 + M

(3)
2 + M

(4)
2 + M

(5)
2 + M

(6)
2 + M

(7)
2 + M

(8)
2 )μν ,

M = ū(q−)[tctaM (1) + tatcM (2)]μνv(q+)ea
μ(k)eb

ν(k1),

M
(1)
1 =

γν(q− + k1 + m)γμ(−q+ + q + m)p2

[(q− + k1)2 − m2][(−q+ + q)2 − m2]
= R1,

M
(1)
2 =

γν(q− + k1 + m)p2(−q+ + k + m)γμ

[(q− + k1)2 − m2][(−q+ + k)2 − m2]
= R2, (92)

M
(1)
3 =

p2(q− − q + m)γν(−q+ + k + m)γμ

[(−q+ + k)2 − m2][(q− − q)2 − m2]
= R3,

M
(1)
7 + M

(1)
8 =

Vμλν

(k1 − k)2

[
γλ(−q+ + q + m)p2

(−q+ + q)2 − m2
+

p2(q+ − q + m)γλ

(q+ − q)2 − m2

]
= R4,

M
(2)
4 =

γμ(q− − k1 + m)γν(−q+ + q + m)p2

[(−q− − k)2 − m2][(−q+ + q)2 − m2]
= Q1,

M
(2)
5 =

γμ(q− − k + m)p2(−q+ − k1 + m)γν

[(q− − k)2 − m2][(−q+ − k1)2 − m2]
= Q2,

M
(2)
6 =

p2(q− − q + m)γμ(−q+ − k1 + m)γν

[(q− − q)2 − m2][(−q+ − k1)2 − m2]
= Q3,

(93)

M
(2)
7 + M

(2)
8 =

−Vμλν

(k1 − k)2

[
γλ(−q+ + q + m)p2

(−q+ + q)2 − m2
+

p2(q− − q + m)γλ

(q− − q)2 − m2

]
= Q4,

Vμλν = −(k1 + k)λgμν + (2k − k1)νgμλ + (2k1 − k)μgλν ,

M (1,2)
μν kν

1 = M (1,2)
μν kμ = 0.

It can be checked that both contributions M (1) and M (2) obey the gauge condition

M ∼ tctaM (1) + tatcM (2) =

√
N2 − 1

4N

{[
c1 +

√
N2 − 1

2
c2

]
×

× (M (1) + M (2)) +
N√
2
c3

[
M (1) − M (2)

]}
, (94)

M (1) + M (2) = R1 + R2 + R3 + R4 + Q1 + Q2 + Q3 + Q4,
(95)

M (1) − M (2) = (R1 + R2 + R3) − (Q1 + Q2 + Q3) + 2R4,
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Table 4. The function A (y+, y−) (deˇned in (98)) is presented for different values of
the ˇnal quark (lepton) transverse momenta y+ and y− for the quark-pair (lepton-pair)
production (in units of M )

A 0.0428 0.117 0.0652 0.4489 0.193 0.0925 0.0574 0.84 0.275 0.1167

y+ 4 3 3 2 2 2 1 1 1 1

y− 5 4 5 3 4 5 6 3 4 5

|MgP→(gQQ̄)P |2 ≈ N2 − 2
2

Sp q̂−(M1 + M2)q̂+(M1 + M2)∗+

+
N2

2
Sp q̂−(M1 − M2)q̂+(M1 − M2)∗ = Atot, (96)

M1 + M2 = R1 + R2 + R3 + Q1 + Q2 + Q3,
(97)

M1 − M2 = R1 + R2 + R3 − Q1 − Q2 − Q3 + 2R4.

Again one can deˇne the asymmetry A, which appears because of non-
Abelian nature of QCD. This asymmetry is deˇned as (see Table 4):

A =
Anon-Abel

Atot
, (98)

Anon-Abel = 2N2
{
Sp q̂−R4q̂+R+

4 +

+ Sp q̂−(R1 + R2 + R3 − Q1 − Q2 − Q3)q̂+R+
4

}
, (99)

R1 =
γν(q̂− + k̂1)γμ(−q̂+ + q̂)p̂2

d−1d+q
, R2 =

γν(q̂− + k̂1)p̂2(−q̂+ + k̂)γμ

d−1d+k
,

R3 =
p̂2(q̂− − q̂)γν(−q̂+ + k̂)γμ

d−qd+k
, Q1 =

γμ(q̂− − k̂)γν(−q̂+ + q̂)p̂2

d−kd−q
,

(100)

Q2 =
γμ(q̂− − k̂)p̂2(−q̂+ − k̂1)γν

d−kd+(−k1)
, Q3 =

p̂2(q̂− − q̂)γμ(−q̂+ − k̂1)γν

d−qd+(−k1)
,

R4 =
Vμλν

d

[
γλ(−q̂+ + q̂)p̂2

d+q
+

p̂2(q̂− − q̂)γλ

d−q

]
.

CONCLUSION

In conclusion, we remind a remarkable property of the kinematics of processes
in the fragmentation region. It is known as a ®cumulation¯ phenomenon
(see Fig. 3). It consists of events with production of a heavy quarkÄantiquark
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Fig. 3. The ®cumulation effect¯

pair, accompanied by the ®re	ected¯
scattered parent light particle. It was
known in the processes of production of
a muonÄantimuon pair in the fragmenta-
tion region of an electron in electronÄ
positron collisions [26]. It turns out
that the electron ®accompanying¯ the
pair created in the kinematic region near
the threshold moves in the direction op-
posite to the initial electron direction.
In the case of production of a heavy
quarkÄantiquark pair by one of the va-

lence quarks from the initial proton, the parent (light) quark is effectively
re	ected. So the jet created by this quark corresponds in fact to two jets,
one consists of the pair created and two spectator quarks from the initial pro-
ton and the other, moving in the opposite direction, created by the ®re	ect-
ed¯ quark. To see it, let us consider the kinematics of a peripheral process
q(p1) + q(p2) → Q(pa) + Q̄(pb) + q(p′1) + q(p′2). Using the Sudakov parameter-
ization (3) with

p̃1 = E(1, 1, 0, 0), p̃2 = E(1,−1, 0, 0), p⊥ = (0, 0,p), (101)

we obtain for 4-momentum of the scattered quark

1
E

p′1 =
m2 + p2

xs
(1,−1, 0, 0) + x(1, 1, 0, 0) + (0, 0,p). (102)

Comparing its component along the z axis from the ˇrst and second terms we
ˇnd that for

x − m2 + p2

4E2x
< 0, p2 = (pa + pb)2, (103)

the ®re	ection¯ phenomenon takes place. For instance, assuming p2 ∼ M2 �
m2, we have x < (M/2E) ∼ 1. This situation can be realized near the threshold
of the heavy-pair production.

The expressions for the differential cross section of emission of two hard
photons were obtained in the WW approximation in [24] by using the explicit
expression of the double Compton scattering cross section obtained in [25].

Using the formulae given above, the energyÄenergy correlations of the jets in
the ˇnal state can be constructed. It consists in the construction of an average of
the product of the energy fractions of the heavy quarks. As well, the azimuthal
angle correlation, which is the average of 2(q+i)(q−j)/

√
s, can be investigated.

Energy spectra, total cross sections, and sum rules for different processes in the
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fragmentation region can be investigated in full analogy with the QED program
for colliding eY = (eX)Y [13].

The approach developed here can be used for description of jets in the
fragmentation region with creation of K, K̄ states when the heavy strange quark
and antiquark are created. The jets originated from D, D̄ and B, B̄ can be
considered as well.

In the plot (see Fig. 4), the dependence of the QQ̄-pair production cross
section from the so-called ®two-photon¯ mechanism is presented. It has rather a
large cross section and can be measured in experiment.

Fig. 4. The Φ(z) (deˇned in (54)) as a function of z

In Table 1, the charge-asymmetry effect due to interference of the ®brems-
strahlung¯ and ®two-photon¯ mechanisms is presented as a ratio of the corre-
sponding contributions to the differential cross section. This quantity can also be
measured in spite of its rather small value |A+−| ∼ 0.02−0.03.

In Table 2, the contributions from the so-called ®planar¯ and ®nonplanar¯
contributions to the differential cross section of the double bremsstrahlung process
in electronÄtarget collisions are presented.

Table 3 gives the ratio of contributions with the QED-type gluon splitting
contribution to the process of two-gluon jet production in the quarkÄtarget colli-
sions. Its rather large expected value Agg can also be measured in experiment.
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Appendix A
HEAVY-QUARK PAIR PRODUCTION BEYOND

THE WW APPROXIMATION

The explicit expression for Rbr is

Rbr =
(x+x−

dd′

)2

[dd′[q2[2xx+x−(p1p
′
1) − xx+(p′1q−) − xx−(p′1q+)−

− 2xx+(qq−) − 2xx−(qq+) − x2x+(p1q−) − x2x−(p1q+) + 2x2(q+q−)]+

+ 2x(1 + x)(qq+)(qq−) + 2xx+(qq−)2 + 2xx−(qq+)2]]+

+ 2ρ2x2[M2(p1p
′
1) + (p1q+)(p′1q−) + (p1q−)(p′1q+)]+

+xd′2q2[M2+x+(p1q−)+x−(p1q+)]+x2d2q2[M2x+x+(p′1q−)+x−(p′1q+)]+

+ 2x2dρ[−M2q2 + (qq+)(M2 − 2(p′1q−)) + (qq−)(M2 − (p′1q+))]+

+2xd′ρ[(M2+x+(p1q−)+x−(p1q+))(qp)−x((p1q+)(qq−)+(p1q−)(qq+))]],
(104)

with the notation given above (see (25), (26), (32)).
The quantity R2g enters into the differential cross section in combination

R2g/((q2
2)

2) with q2
2 = −(m2x̄2 + p2)/x. To see rather delicate compensations

in the region of small q2
2 ,p2, we must rearrange the electron tensor as (here we

use the gauge condition q2μū(q−)Qμv(q+) = 0 and q2 ≈ x̄p1 − p⊥)

1
4

Sp (p̂′1 +m)γμ(p̂1 +m)γν = 2p1μp1ν +
q2
2

2
gμν =

2
x̄2

p⊥μp⊥ν +
1
2
q2
2gμν . (105)

In this form, the compensation is clearly seen. So we have

R2g = (1 + P+−)
(

x

d+d−

)2 [
2
x̄2

R2ga +
q2
2

2
R2gb

]
, (106)

with

R2ga =
1
2
(x+x−ρ1)2

[
2(pq−)(pq+) +

1
2
q2
1p

2

]
−

− x+x2
−ρ1d−[2x+(pq−)(pq) + p2(qr)]+

+
1
2
x3
−x+d2

−p2q2 − 1
4
(x+x−)2d+d−(2(pq)2 − q2p2), (107)

R2gb = −ρ2
1q

2
1(x+x−)2 + 2x+x2

−ρ1d−(qr) − x3
−x+d2

−q2,

where we remind

ρ1 = −2x(qr), r = x−q+ − x+q−, p = q − Q, Q = q+ + q−,
(108)

q2
1 =

1
x+x−

[M2x̄2 + r2].
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At least

Rodd =
xx+x−
dd′d+d−

[
(1 − P+−)×

×
[
xx+d+ρ[x−(p1q+)(qq+) + (qq−)(x̄+(p1q+) + (p′1q+)) − x−(p1q+)q2]+

+ x+xd+d

[
1
2
q2[−M2x − x−(p1q+) + 2x−(qq+) − x+x−(p1p

′
1)+

+ xx+(p1q−) − x(qq−)] − x̄+(qq−)(qq+) − x−(qq+)2
]
+

+ x+d+d′
[
1
2
q2[−M2x − xx−(p1q+) − x(q+q−) + 2x+(qq−)+

+ x+(p1q−) − x+x−(p1p
′
1)] − x̄−(qq−)(qq+) − x+(qq−)2

]]
+

+ 2xx+x−ρρ1[M2(p1p
′
1) + (p1q+)(p′1q−) + (p1q−)(p′1q+)]+

+ xx+x−dρ1[(qq+)(M2 − (p′1q−)) + (qq−)(M2 − (p′1q+)) − q2M2]+

+ d′ρ1x+x−[−(qq+)(M2 + x̄−(p1q−) + x−(p1q+)) − (qq−)×

× (M2 + x̄+(p1q+) + x− + x+(p1q−)) + q2(M2 + x−(p1q+) + x+(p1q−))]
]
,

(109)

with ρ = x+x−[−x̄q2 + 2(qQ)]. The operator P+− acts as P+−f(x+,q+;
x−,q−) → f(x−,q−; x+,q+).

Appendix B
DISTRIBUTIONS IN THE WW APPROXIMATION,

HEAVY-FERMION PAIR PRODUCTION

Differential distributions in the WW approximation are

dσep→(eQQ̄)p =
2α4

π
(Lq − 1)RQQ̄

WW

dx+ dx−
xx+x−

dq2
+dq2

−
dφ

2π
,

(110)

RQQ̄
WW =

1
(q2

1)2
Rbr

WW +
1

(q2
2)2

R2g
WW +

2
q2
1q2

2

Rodd
WW,
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where we imply q2
± = q2

±; φ is the azimuthal angle between two-dimensional
vectors q+,q−,

q2
1 =

1
x+x−

[x̄2M2 + r2], q2
2 = − 1

x
[m2x̄2 + Q2],

(111)
r2 = r2, r = x−q+ − x+q−, Q2 = Q2, Q = q+ + q−,

and

Rbr
WW = (1 + P+−)

(x+x−
d2

)2

×

×
[
d2

[
x+x−Q2 − x+(p′1q−) − x2x+(p1q−) + x2(q+q−)+

+
1
2
x(1+x)(q+q−)+x+xq2

+ +
1
2
x(1+x2)M2 +xx+(p1q−)+2x2x+(p′1q−)

]
+

+ x2Q2[M2(p1p
′
1) + 4(p1q+)(p′1q−)] + 2x2x+x−d(Qq+)[M2 − 2(p′1q−)]−

− x+x−xdQ2[M2 + 2x+(p1q−) + 2(p1q+)] − 2x2x+x−d(Qq+)(p1q−)
]
,

(112)

R2g
WW = (1 + P+−)

( x

d2

)2
[

2
x̄2

p2Ra +
1
2
q2
2Rb

]
,

Ra = (xx+x−)2r2

(
(q+q−) +

1
2
q2
1

)
+ xx+x2

−d[x+(rq−) + r2] +
1
2
d2x3

−x+,

(113)
Rb = −2(xx+x−)2r2q2

1 − 2xx+x2
− dr2 − x3

−x+d2,

Rodd
WW=(1−P+−)

xx+x−
d4

[
1
2
d2

[
−M2(1+x)xx+−xx+x−(p′1q−)+x2

+(p′1q+)−

− x[x+x̄+ + x̄−](q+q−) − xx+x−q2
+ − x2

+q2
− − x2

+x−(1 + x)(p1p
′
1)−

− xx+(1 + x)(q+q−) + (xx+)2(p1q−) − xx+x−(p1q+)
]
+

+ x+x−dQ
[
xx+x−(p1q+)q+ + q−

[
xx+x̄+(p1q+) + xx+(p′1q+)

]]
−

− 1
2
xdr

[
−q+

[
M2x+x−x̄ + xx+x−(p′1q−) + x+x−x̄−(p1q−) + x+x2

−(p1q+)
]
−

− q−
[
M2x+x−x̄ + xx+x−(p′1q+) + x+x−x̄+(p1q+) + x−x2

+(p1q−)
]]
−

− 2(x+x−x)2(Qr)
[
M2(p1p

′
1) + (p1q−)(p′1q+) + (p1q+)(p′1q−)

]]
. (114)
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Here we use the notation

(p1p
′
1) =

1
2x

Q2, (p1q+) =
1

2x+
[M2 + q2

+], (p1q−) =
1

2x−
[M2 + q2

−],

(p′1q+) =
1

2xx+
[M2 + r2

+], (p′1q−) =
1

2xx+
[M2 + r2

−],

(q+q−) =
1

2x+x−
[M2(x2

+ + x2
−) + r2], r2 = (x−q+ − x+q−)2,

q2
1 =

1
x+x−

[M2x̄2 + r2], q2
2 = − 1

x
[m2x̄2 + Q2], (115)

d = m2x+x−x̄ + M2xx̄ + q2
+x−x̄− + q2

−x+x̄+ + 2x+x−q+q− cosφ,

r2
− = (x̄+q− + x−q+)2, r2

+ = (x̄−q+ + x+q−)2,

(p1p
′
1) =

1
2x

Q2, (q+q−) = q+q− cosφ.

The differential distribution in the WW approximation is

dσep→(eQQ̄)p =
2α4

π
(Lq − 1)×

×
[

1
(q2

1)2
Rbr

WW +
1

(q2
2)2

R2g
WW +

2
q2
1q

2
2

Rodd
WW

]
dx+ dx−
xx+x−

dq2
+ dq2

−
dφ

2π
. (116)

We put as well the contribution to the differential cross section from two gamma
mechanisms integrated over both virtual photon transfer momentum variables

dσ
ep→(eQQ̄)p
2g

dx+dx−dq2
+

=
2α4

π

Lq − 1
xx+x−

(1 + P+−)
x2

d4
0

[
2x2

x̄2
(Lp − 1)Ra0 +

1
2
xLpRb0

]
,

Ra0 = (xx+x−)2q2
+x̄2[q2

10 − q2
+] + x̄x+x− d0q

2
+ +

1
2
d2
0x+x3

−, (117)

Rb0 = 2(xx+x−x̄)2q2
+q2

10 + 2(x̄x−)2xx+ d0q
2
+ + d2

0x+x3
−,

where

q2
10 =

x̄2

x+x−
[M2 + q2

+], d0 = x̄[m2x+x− + x(M2 + q2
+)],

(118)

Lp = ln
M2

m2x̄2
, Lq = ln

M2s2

M2
Y d2

0

.
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The restrictions

x+ + x− = x̄ = 1 − x,
2M√

s
< x± < 1 − 2M√

s
,

(119)
x̄2

x+x−
>

4M2

M2 + q2
+

are implied.
The distribution as a function of the two-gluon invariant mass square was

considered in paper [27].

Appendix C
DISTRIBUTIONS IN THE WW APPROXIMATION,

TWO-PHOTON AND TWO-GLUON EMISSION

Differential distribution for the process eY → (eγγ)Y in the WW approxi-
mation is

dσ
ep→(eγγ)p
WW =

2α4

π
(Lq − 1)(1 + P12)[Rpl + Rnpl] dk2

1 dk2
2

dφ

2π
,

(120)

dσ
qp→(qgg)p
WW =

α2α2
s

π

N2 − 1
N3

(Lq − 1)[(1 + P12)[Rpl + Rnpl]
N2 − 2

2
+

+
N2

2
[(1 + P12)(Rpl − Rnpl) + 4(R33 + R321 − R312)] dk2

1 dk2
2

dφ

2π
.

The expressions for Ri are

Rpl =
1
x̄2

1

Ipl, Rnpl =
1

x̄1x̄2
Inpl,

(121)

R33 = I33, R321 = − 1
x̄2

I321, R312 = − 1
x̄1

I312,

and

Ipl =
1

4s2
Sp p̂′1O12p̂1O

+
12,

Inpl =
1

4s2
Sp p̂′1O12p̂1O

+
21,

I33 =
1

4s2
Sp p̂′1O3p̂1O

+
3 , (122)

I321 =
1

4s2
Sp p̂′1O3p̂1O

+
21,

I312 =
1

4s2
Sp p̂′1O3p̂1O

+
12.
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The simpliˇed expressions for effective vertices are

O12 = R1ê2(p̂′1 + k̂2)p̂2(p̂1 − k̂1)ê1 + rê2p̂2ê1+

+ c1ê2(p̂′1 + k̂2)[x̄1ê1q̂p̂2 + p̂2q̂ê1] + d1[x̄1p̂2q̂ê2 + xê2q̂p̂2](p̂1 − k̂1)ê1 (123)

and

O21 = R2ê1(p̂′1 + k̂1)p̂2(p̂1 − k̂2)ê2 + rê1p̂2ê2+

+ c2ê1(p̂′1 + k̂1)[x̄2ê2q̂p̂2 + p̂2q̂ê2] + d2[x̄2p̂2q̂ê1 + xê1q̂p̂2](p̂1 − k̂2)ê2], (124)

O3 = − 2
q2
1

x1x2

d2
[xsρV̂ + d′p̂2q̂V̂ + xdV̂ q̂p̂2],

(125)
V̂ = ê1(k1e2) + k̂2(e1e2) − ê2(k2e1),

with

R1 =
2(xx2

1x
2
2)

2

k2
1r

2
2d

2
q[dr2 − xx2k

2
1Q], R2 =

2(xx2
1x

2
2)

2

k2
2r

2
1d

2
q[dr1 − xx1k

2
2Q],

r =
2xx2

1x
2
2

d2
qQ, d = m2x̄x1x2 + k2

1x2x̄2 + k2
2x1x̄1 + 2x1x2k12, (126)

ρ = 2x1x2qQ,

where we use the notation k2
i = k2

i , k12 = k1k2,

r = x2k1 − x1k2,Q = k1 + k2,
(127)

r1 = x̄2k1 + x1k2, r2 = x̄1k2 + x2k1

and use, besides,

c1 =
x1(xx2)2

r2
2d

, d1 = −x2x
2
1

k2
1d

,

c2 =
x2(xx1)2

r2
1d

, d2 = −x1x
2
2

k2
2d

,

(128)

(p1p
′
1) =

1
2x

Q2, (p1k1) =
1
x1

k2
1 , (p1k2) =

1
x2

k2
2 ,

(p′1k1) =
1

xx1
r2
1 , (p′1k2) =

1
xx2

r2
2 , (k1k2) =

1
2x1x2

r2.
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Appendix D
REPRODUCE NOW THE LANDAUÄLIFSHITZ (LL) RESULT

In the case of not too large invariant mass square of the subject F created
by two photons, cross section is

σtot(s) =
α2

π2

∞∫
4M2

ds1

s1
σγγ→F (s1)

1∫
s1/s

dβ1

β1
N(β1)N(α2), α2 =

s1

sβ1
,

(129)

N(β1) =

σ∫
0

z1 dz1

(z1 + β2
1)2

= ln
σ + β2

1

β2
1

− σ

σ + β2
1

, σ =
〈

M

me

∣∣∣∣
2

� 1.

Here we choose the upper limits of transverse momentum σ to be large compared
with electron mass and do not exceed the mass of the created pair. Performing
the integration on β1 we obtain

σtot(s) =
α2

π2

∞∫
4M2

ds1

s1
σγγ→F (s)

[
2
3
L3

σ − 2L2
σ +

(
1 +

π2

3

)
Lσ − π2

3

]
,

(130)
Lσ = ln

sσ

s1
.

This region gives the leading contribution to the cross section. The regions when
one or both transverse momenta exceed the mass of the created system produce
lower orders of Lσ and as well the terms proportional to powers of ln σ. The
total contribution of all kinematical regions does not depend on the auxiliary
parameter σ. It is cited above. To restore the coefˇcient of the cubic term, we
remind the explicit form of the total cross section of production of lepton pair by
two teal photons

σγγ→F (s) = σp(s) =
πα2

xm2

[(
2 +

2
x2

− 1
x4

)
ln

(
x +

√
x2 − 1

)
−

−
(

1 +
1
x2

)√
1 − 1

x2
, s = 4x2m2. (131)

Using the result
∞∫

4m2

ds1

s1
σ(s1) =

πα2

m2

14
9

, (132)

we arrive to LL result

σtot =
28
27

α4

πm2
ln3 s

m2
. (133)
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Appendix E
REPRODUCE NOW THE BRODSKYÄKINOSHITAÄTERAZAWA (BKT)

RESULT

In the case when the energies of the scattered electrons are essentially less
than the energies of the initial ones, the formulae for total cross sections must be
modiˇed. We start from the usual expression for the matrix element

M =
4πα

q2
1q

2
2

ū(p′1) γμu(p1) ū(p′2) γνu(p2)T μν . (134)

First we will use the 4-momenta of virtual photons instead of the momenta of
the scattered electrons, besides, we accept the Sudakov parameterization of 4-mo-
menta of the problem, for the phase volume of the scattered electron moving in
direction close to the momentum of electron p1

d3p′1
2ε′

= d4q1δ
4(p1 − p′1 − q1) d4p′1δ((p1 − q1)2 − m2) =

s

2
d2q1 dα1 dβ1,

(135)
δ(−sα1(1 − β1) − m2β1 − q2

1).

Applying the Sudakov parameterization

q1 = α1p2 + β1p̃1 + q1⊥, q1⊥p2 = q1⊥p1 = 0,

p̃1 = p1 − p2
m2

s
, p2

1 = m2, 2p1p̃1 = m2, q2
1⊥ = −q2

1 < 0, (136)

q2
1 = −q2

1 + m2β2
1

1 − β1
,

we obtain
d3p′1
2ε′

=
dβ1

1 − β1

1
2
dq2

1

dφ1

2π
. (137)

The square of current, associated with electron e(p1), summed on spin states and
averaged on the azimuthal angle φ1, is

〈∑
ū(p′1)γμu(p1)ū(p′1)γμ1u(p1))∗

〉
= 4

〈[
2p1μp1μ1 +

1
2
q2
1gμν

]〉
. (138)

More convenient formulae can be obtained if one uses the gauge condition
qμ
1 Tμν = (β1p1 + q1⊥)Tμν = 0. In such a way we obtain

〈∑
ū(p′1)γμu(p1)ū(p′1)γμ1u(p1))∗

〉
= −4q2

1gμν

1 − β1

[
1 − β1

β2
1

+
1
2

]
. (139)
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In the similar way we obtain for the current associated with electron e(p2):〈∑
ū(p′2)γνu(p2)(ū(p′2)γν1u(p2))∗

〉
= −4q2

2gνν1

1 − α2

[
1 − α2

α2
2

+
1
2

]
. (140)

Here we use the similar Sudakov parameterization q2 = β2p̃2 + α2p1 + q2⊥,
writing the phase volume as

dΓ = dγ
1

(2π)6
π dq2

1 dβ1

2(1 − β1)
π dq2

2 dα2

2(1 − α2)
,

(141)

dγ =
(2π)4

(2π)6
d3q+

2E+

d3q−
2E−

δ4(q1 + q2 − q+ − q−).

Let us introduce, as a new variable, the invariant mass square of the created
system s1 = (q+ + q−)2 ≈ sα2β1

∫
dα2 dβ1θ(sα2β1 − 4M2) =

1
s

∞∫
4M2

ds1

1∫
s1/s

dβ1

β1
. (142)

Note now that the quantity∫
1

8s1
Tμν(Tμ1ν1)

∗gμμ1gνν1 dγ = σγγ→F (s1) (143)

coincides with the total cross section of production of the system F by two
photons.

For the differential cross section we have

dσ =
α2

π2

q2
1 dq2

1q
2
2 dq2

2

(q2
1 + m2β2

1)2(q2
2 + m2α2

2)2

∞∫
4M2

ds1σ
γγ(s1)

s1

s2
I, (144)

with

I =

1∫
s1/s

dβ1

β1

[
1 − β1

β2
1

+
1
2

] [
1 − α2

α2
2

+
1
2

]
, α2 =

s1

sβ1
. (145)

The calculation leads to

I =
s2

4s2
1

f(z), f(z) = (2 + z)2 ln
1
z
− 2(1 − z)(3 + z), z =

s1

s
. (146)

Integration on the transversal momenta of virtual photons in the region 0 < q2
1,2 <

E2 leads to the famous formulae of BKT

σ(s)ee→eeF =
(α

π

)2
(

ln
E

me

)2
∞∫

4M2

ds1

s1
σγγ→F (s1)f

(s1

s

)
. (147)
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Appendix F
CREATION OF A HEAVY PARTICLE

IN THE FRAGMENTATION REGION OF ONE ELECTRON

For deˇniteness, we consider the process ee → (eF )e

e(p1) + e(p2) → [e(p′1)Q
+(q+)Q−(q−)]e(p′2). (148)

For azimuthal averaged squares of currents, summed on the spin states, we have

〈∑
ū(p′1)γμuu(p1)(ū(p′1)γμ1u(p1))∗

〉
= −4q2

1gμμ1

1 − β1

[
1 − β1

β2
1

+
1
2

]
,

(149)〈∑
ū(p′2)γνu(p2)(ū(p′2)γν1u(p2))∗

〉
= −4q2

2gνν1

α2
2

.

In the last expression, we use the gauge condition qν
2Tμν = (α2p2+q2⊥)νTμν = 0.

Expressing the phase volume of the scattered electrons as

d3p′1
2E′

1

=
dβ1

1 − β1

π

2
dq2

1

(
dφ1

2π

)
,

(150)
d3p′2
2E′

2

= dα2
π

2
dq2

2

(
dφ1

2π

)
,

we remind that the quantity β1 is of an order of unity, whereas α2 is small. The
threshold condition must be fulˇlled

s1 = sα2β1 > sth = 4M2. (151)

For the contribution to the total cross section we obtain

σ(s)ee→(eF )e =
(α

π

)2
(

ln
E

me

)2
∞∫

4M2

ds1

s1
σγγ→F (s1)φ

(s1

s

)
,

(152)

φ(z) = 4 ln
1
z
− (1 − z)(3 − z).

Appendix G
TRANSFER OF CIRCULAR POLARIZATION OF THE INITIAL

ELECTRON TO THE POSITRON IN THE FRAGMENTATION REGION

This phenomenon is similar to ®handedness¯ when the initial polarized par-
ticle causes polarization of the fermionic fragments of the jet created by this
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projectile, or reveals itself in kinematical correlations of momenta of different
pions from the jet.

The matrix element of the process e(p1, λ)ē(p2) → [e(p′1)e(q−)ē(q+, λ1)]×
ē(p′2) has the form

4πα2

q2
1q

2

1
2
ū(p′1)γμ(1 + λγ5)u(p1)

1
2
ū(q−)Oμν(1 − γ5)v(q+)ū(p′2)γνu(p2). (153)

For the summed on the spin states square of the matrix element, we have

∑
|M |2 = (4πα)48

{
1
4

Sp (q̂− +m)Oμ(q̂+ +m)O∗
ν

q2
1gμν

1 − β1

(
1 − β1

β2
1

+
1
2

)
+

+ λ
1
4

Sp q̂−Qμq̂+Q+
ν γ5

1
4

Sp p̂1q̂1γμγνγ5

}
q2
1q

2(1 − β1)2

(q2
1 + β2

1m2)2(q2 + m2α2
2)2

, (154)

with

Qμ =
1

s2
1x+x−

[2qrγμ − s1x−γμq̂p̂2 + s1x+p̂2q̂γμ],

(155)

s1 =
x̄

x+x−
[q2

− + am2],

with a = (x̄+x̄−)/x, x̄ = 1 − x = x+ + x−.
Averaging over the azimuthal angle d2q, permits one to extract the general

factor s2q2, which will be absorbed in the total expression for spectral distribu-
tions on the energy fractions of fermions in a jet. Using the expression for phase
volume in the fragmentation region

dΓ4 =
d3p′1 d3p′2 d3q+ d3q−

2ε′12ε′22ε+2ε−

(2π)4

(2π)2
δ4(p1 + p2 − p′1 − p′2 − q+ − q−) =

= π3(2π)−8 dx− dβ1

8sxx+x−

d2q

π

d2q1

π

d2q−
π

, (156)

we ˇrst extract the leading logarithmic factor L1Lq with

L1 =

s∫
0

dq2
1q

2
1

(q2
1 + m2

eβ
2
1)2

, Lq =

s∫
0

dq2q2

(q2 + m2
eα

2
2)2

.

With the logarithmic accuracy, we have

L1 = Lq = L = ln
s

m2
e

. (157)
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For the unpolarized part of the cross section we obtain

dσunp =
α4

2π
L2 dq2

−
s4
1(x+x−)2

dx−dx(1 + x2)
2x̄2

[
x+x−(x2

+ + x2
−)s2

1−

− 2x̄3s2
1q

2
− + 2

x̄2

x+x−
q2
−[x̄2q2 + m2(x̄2 + 2x+x−)]

]
. (158)

Integration over dq2
− leads to

dσunp =
α4

2πm2
e

L2 xdx− dx(1 + x2)
x̄4x̄+x̄−

×

×
[
−2x+x− +

2
3
x̄2 +

x

3x̄+x̄−
[x̄2 + 2x+x−]

]
. (159)

Here we imply the threshold restriction (4m2
e/s < x+ + x−).

Consider now the contribution to the cross section associated with the po-
larized part of the matrix element. Performing the extraction of factor q2

1 and
the relevant azimuthal averaging procedure, we must do a shift transformation
q− = q̃− + (x−/x̄)q1 and q+ = −q̃− + (x−/x̄)q1.

In terms of the shifted variables, the quadratic form s1 is s1 = (x̄/(x+x−)×
[q̃2

− + am2]. In a similar way, we obtain

dσpol =
α4

2π
L2 dq2

−
s4
1(x+x−)3

xdx− dxλ(x+ − x−)×

×
[
−x+x−s2

1 +
1
x̄

(2x̄2 − x+x−)s1q2
− − 2(x+ − x−)2

x+x−
(q2

−)2
]
. (160)

We note that compared with the unpolarized case, the terms proportional to the
electron mass squared do not contribute. Further integration leads to the ˇnal
result

dσpol = λ
α4

12πm2
e

L2 x2dx−dx

x̄4x̄+x̄−x+x−
(x+ − x−)[4x̄2 − 5x+x−]. (161)

The degree of polarization transferred from the initial electron to the ˇnal
positron can be found as (see Table 5)

〈λ〉positron

λ
=

dσpol

dσunp
= F (x−, x),

(162)

F (x−, x) = (x+ − x−)
4x̄2 − 5x+x−

(x2+ 1)x+x−

[
−6x+x− + 2x̄2+

x

x̄+x̄−
(x̄2+ 2x+x−)

] .
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Table 5. The function F (x−, x) (deˇned in (162)) is presented for different values of
the ˇnal lepton transverse momenta x+ and x− for the lepton-pair production (in units
of M )

x−
x+

0.25 0.3 0.35 0.4 0.45 0.5

0.25 0.853
0.3 Ä0.853 0.705
0.35 Ä0.705 0.6315
0.4 Ä0.6315 0.6308
0.45 Ä0.6303 0.786
0.5 Ä0.786

Appendix H
PROCESSES OF TYPE 2 → 2 IN QCD. HIGH-ENERGY LIMIT

Processes with interaction of quark, antiquarks, and gluon of type 2 → 2 are
investigated in the approximation of high energies and ˇnite scattering angles. All
particles assumed to be massless. The summed on spin and color states of matrix
elements square and the relevant cross sections are presented. Chiral amplitudes
method and projections on the deˇnite color states are used.

Below we will consider, in some detail (with the pedagogical aim), calculation
of matrix elements and the differential cross sections of the simplest processes of
type 2 → 2 in the frames of Quantum ChromoDynamics (QCD) with gluons and
quarks taking part. We imply the acquaintance of the reader with basic knowledge
of Quantum Field Theory [6].

H.1. Process 2 → 2 in QCD. We will consider the processes

a(p1, la) + b(p2, lb) → c(p3, lc) + d(p4, ld) (163)

with pi-4-momenta of particles, p1 + p2 = p3 + p4 and lj incorporate the infor-
mation on the color and spin states of particles. We imply the center of mass of
the initial particles reference frame p1 + p2 = 0 with the kinematic invariants

s = 2p1p2 = 2p3p4, t = −2p1p3 = −2p2p4, u = −2p1p4 = −2p2p3,

s + t + u = 0, s = 4E2, t = −s(1 − c)/2, u = −s(1 + c)/2, (164)

p2
i = 0, i = 1, 2, 3, 4,

with E being the energy of one of initial particles, c = cos θ, θ = (p1,p3) being
the angle between the direction of 3-momenta of initial and the scattered particles.
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We will calculate below the summed on spin and color states of matrix
elements squares of the typical processes 2 → 2∑

|M |2 = g4
∑
abcd

∑
l1l2l3l4

|M l1l2l3l4
abcd |2, (165)

with g2 = 4παs-strong coupling constant.
H.2. Process qq → qq. Consider ˇrst the process of scattering of quarks of

the same 	avor

q(p1, λ1, i1) + q(p2, λ2, i2) → q(p3, λ3, i3) + q(p4, λ4, i4), (166)

with λj and ıj being the chirality λi = ±1 and color of quarks i = 1, 2, 3 Å
yellow, green and red states of quarks. Matrix element has the form

Mλ1,λ2,λ3,λ4
i1i2i3i4

= (ta)31(ta)42M1 − (tb)41(tb)32M2,

M1 =
1
t
ūλ3(p3)γμuλ1(p1)ūλ4(p4)γμuλ2(p2), (167)

M2 =
1
u

ūλ4(p4)γμuλ1(p1)ūλ3(p3)γμuλ2(p2),

and (ta)31 = ē3t
ae1, (ta)42 = ē4t

ae2, ta is the generator of the color group
SU(N); and e2, the color spinor. Chiral states are deˇned as [19]

u± = ω±u, ū± = ūω∓, v± = ω∓v, v̄± = v̄ω±,
(168)

ω± =
1
2
(1 ± γ5), ω±ω∓ = 0, ω± + ω∓ = 1, ω±ω± = ω±.

The completeness relations take place

u(p)±ū(p)± = ω±p̂, v(p)±v̄(p)± = ω∓p̂. (169)

Using this relation, we calculate the deˇnite chiral amplitudes in such a way (we
use here the short-hand notations u3 = u(p3)λ3 and the similar ones):

M++++
1 =

1
tR14R23

ū3γμω+u1R14ū4γμω+u2R23,

(170)
R14 = ū1p̂2ω+u4, R23 = ū2p̂1ω+u3.

Using the completeness relations and Dirac equations p̂iu(pi) = 0, we obtain

M++++
1 =

1
tR14R23

Sp p̂3γμp̂1p̂2p̂4γμp̂2p̂1ω+ =
2s2t

R14R23
. (171)
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In a similar way, we obtain

M++++
2 =

2s2u

uR13R24
,

(172)
R13 = ū1p̂2ω+u3, R24 = ū2p̂1ω+u4.

For two remaining nonzero amplitudes with λ1 = +, M+−+−
1 , M+−−+

2 , we have

M+−+−
1 =

1
tP14P23

ū3γμω+u1P14ū4γμω+u2P23 =
2u2

P14P23
,

P14 = ū1ω−u4, P23 = ū2ω−u3,
(173)

M+−−+
2 =

1
uP13P24

ū4γμω+u1P13ū4γμω+u2P24 =
2t2

P13P24
,

P13 = ū1ω−u3, P24 = ū2ω+u4.

In such a way we have

M++++ =
1
t
(ta)31(ta)42

2s2t

R14R23
− 1

u
(tb)41(tb)32

2u2t

R13R24
,

M+−+− =
1
t
(ta)31(ta)42

2u2

P14P23
, (174)

M+−−+ = − 1
u

(tb)41(tb)32
2t2

P13P24
.

We use the relation

|R14|2 = Sp p̂1p̂2p̂4p̂2ω+ = −st, |R23|2 = −st, |R13|2 = |R24|2 = −su,

|P14|2 = |P23|2 = −u, |P13|2 = |P24|2 = −t, (175)

R14R23[R13R24]∗ = −s2tu.

For the color structures, we use

(ta)31(ta)42[(tb)31(tb)42]∗ = (Tr tatb)2 =
1
4
δaa =

1
4
(N2 − 1),

(176)

(ta)31(ta)42[(tb)41(tb)32]∗ = Tr tatbtatb = −1
2
CF , CF =

1
2N

(N2 − 1).

As a result, we have

|M++++|2 = (N2 − 1)
[
s2

t2
+

s2

u2
− 2

N

s2

tu

]
, (177)

|M+−+−|2 = (N2 − 1)
u2

t2
, |M+−−+|2 = (N1 − 1)

t2

u2
. (178)
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And for the total sum (
∑

|Mλ1λ2λ3λ4 |2 = 2
∑

|M+λ2λ3λ4 |2), we have

∑
|M |2qq→qq = 2(N2 − 1)

[
s2

t2
+

s2

u2
− 2s2

Ntu
+

u2

t2
+

t2

u2

]
. (179)

For differential cross section, we have (N = 3)

dσqq→qq

dO3
=

α2
s

9s

[
s2 + u2

t2
+

s2 + t2

u2
− 2

3
s2

tu

]
. (180)

H.3. Scattering of Quarks of Different Flavors. Only one Feynman diagram
(scattering channel type) contributes

M = (ta)31(ta)42
1
t
ū3γμu1ū4γμu2. (181)

Two relevant chiral amplitudes are

M++++ = (ta)31(ta)42
1
t

2s2t

R14R23
,

(182)

M+−+− = (ta)31(ta)42
1
t

2u2

P14P23
.

We have for the summed matrix element squared

∑
|M |2 =

2(N2 − 1)(s2 + u2)
t2

, (183)

and for the cross section

dσ

dO3
=

α2
s(N

2 − 1)
8N2s

s2 + u2

t2
. (184)

H.4. Process qq̄ → qq̄. Matrix elements have the form

M = (ta)31(ta)24M1 − (tb)21(tb)34M2, (185)

with

M1 =
1
t
ū3γμu1v̄2γμv4,

(186)

M2 =
1
s
v̄2γλu1ū3γλv4.
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For chiral amplitudes, we have

M++++
1 =

1
tN12N43

Sp p̂3γμp̂1p̂2γμp̂4ω+ =
2s2

tN12N43
,

N12 = ū1ω−v2, N43 = v̄4ω+u3,

M+−−+
2 =

2t2

sN13N42
, N13 = ū1ω−u3, N42 = v̄4ω+v2,

(187)

M+−+−
1 =

1
tK12K43

Sp p̂3γμp̂1p̂3p̂2γμp̂4p̂2ω+ =
−2t2u

tK12K43
,

M+−+−
2 =

−2u2s

sK13K42
, K12 = ū1p̂3ω−v2, K43 = v̄4p̂2ω+u3,

K13 = ū4p̂2ω+u3, K42 = v̄4p̂1ω+v3.

Keeping in mind the relations

|N12|2 = |N43|2 = s, |N13|2 = |N42|2 = −t, |K12|2 = |K43|2 = tu,
(188)

|K13|2 = |K42|2 = −us, K12K43[K13K42]∗ = −u2ts,

and taking into account the color factors, we obtain

|M+−+−|2 = (N2 − 1)
[
u2

t2
+

u2

s2
− 2u2

Nts

]
,

(189)

|M++++|2 = (N2 − 1)
s2

t2
, |M+−−+|2 = (N2 − 1)

t2

s2
.

The differential cross section is (the averaging on the color states of initial quarks
factor 1/N2 is included)

dσ

dO3
=

(N2 − 1)α2
s

8N2

[
t2 + u2

s2
+

s2 + u2

t2
− 2u2

Nts

]
. (190)

H.5. Subprocess qq̄ → q′q̄′. Only annihilation channel Feynman diagram is
relevant. We have for the summed matrix element square

∑
|M |2 = 2(N2 − 1)

u2 + t2

s2
(191)

and for the cross section (averaging color factor 1/N2 is included), N = 3

dσ

dO3
=

α2
s

9s

u2 + t2

s2
. (192)
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H.6. Process qq̄ → gg. Matrix element of the process

q(q1) + q̄(q2) → g(q3, e
a, a) + g(q4, e

b, b) (193)

is described by three Feynman diagrams. It has the form M = v̄2Ou1 with

O = tbta
1
t
êb(q̂1 − q̂3)êa + tatb

1
u

êa(q̂1 − q̂4)êb−

− 2
s
(tatb − tbta)[−êa(q3e

b) + êb(q4e
a) + q̂3(eaeb)]. (194)

One can be convinced that the gauge condition is fulˇlled. Namely, with replace-
ment ea → q3, the expression for matrix element turns to zero. We obtain

∑
|M |2 = Sp p̂2Op̂1O

∗+ = 8NCF

[
N2 t2 + u2

s2
+ 2CF

t2 + u2

tu

]
. (195)

For the differential cross section, we obtain (averaging color factor 1/N2 is
included, but identity factor 1/2! for the ˇnal 2-gluon state is not included)

dσ

dO3
=

8α2
s

27s

t2 + u2

tu

[
1 − 9

4
tu

s2

]
. (196)

H.7. Process qg → qg. Matrix element of process g(p1) + q(p2) → g(p3) +
q(p4) has the form M = ū4Ou2 with

O =
1
s
t3t1ê3(p̂3 + p̂4)ê1 +

1
u

t1t3ê1(p̂2 − p̂3)ê3−

− 2
t
(t1t3 − t3t1)[−p̂3(e1e3) + ê1(e3p1) + ê3(e1p3)]. (197)

For the summed on the spin and color states of matrix element square, we obtain

∑
|M |2 = −8NC2

F

s2 + u2

su

[
1 − 2N2su

(N2 − 1)t2

]
. (198)

For the differential cross section (color averaging factor is 1/(N(N2 − 1)), we
obtain (N = 3)

dσ

dO3
= − α2

s

27s

s2 + u2

tu

[
1 − 9

4
su

t2

]
. (199)

H.8. QCD Process gg → gg. Matrix element of process

g(p1, e
a
1) + g(p2, e

b
2) → g(p3, e

c
3) + g(p4, e

d
4) (200)
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has the form

M = [I(abcd)T + J(abcd)K + L(abcd)Q]μνλρe
a
1μeb

2νec
3λed

4ρ, (201)

with color structures

I(abcd) = fabef cde, J(abcd) = facefdbe, L(abcd) = fadef bce, (202)

Lorentz structures

Tμνλρ = gμλgνρ − gμρgνλ − 4
s
V 11

μνηV 12
ρλη ,

Kμνλρ = gμρgνλ − gμνgρλ +
4
t
V 21

λμηV 22
νρη, (203)

Qμνλρ = gμνgλρ − gμλgνρ −
4
u

V 31
ρμηV 32

νλη,

and

V 11
μνη = p1ηgμν + p2μgνη − p1νgημ,

V 12
ρλη =

1
2
(p3 − p4)ηgρλ − p3ρgλη + p4λgηρ,

V 21
λμη = −p1ηgλμ + p1λgμη + p3μgηλ,

(204)

V 22
νρη =

1
2
(p2 + p4)ηgνρ − p2ρgην − p4νgρη,

V 31
ρμη = −p1ηgρμ + p1ρgμη + p4μgηρ,

V 32
νλη =

1
2
(p2 + p3)ηgνλ − p2λgην − p3νgλη.

One can be convinced in fulˇllment of gauge condition: when replacing e1(p1)
by p1, matrix element turns to zero. We must use Lorentz conditions (eipi) =
0, i = 2, 3, 4 and Jacobi identity I + J + L = 0. Matrix element obeys the Bose
symmetry: it is invariant over the simultaneous replacement of four momenta,
Lorentz indices and color indices of any two gluons. Using the completeness
equations

∑
λ

ea
μλeb∗

νλ = −gμνδab and

∑
abcd

I2(abcd) =
∑
abcd

J2(abcd) =
∑
abcd

L2(abcd) = N2(N2 − 1),

(205)∑
abcd

I(abcd)JabcdJ = −1
2
N2(N2 − 1),

after some algebra, one obtains∑
|M |2 = 16N2(N2 − 1)

[
3 − ut

s2
− us

t2
− st

u2

]
. (206)
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For differential cross section, we obtain (color averaging factor is 1/(N2 − 1)2)

dσ

dO
=

9α2
s

32s

1
(stu)2

[s4 + t4 + u4][s2 + t2 + u2], (207)

where we use the alternative form of the factor in the square brackets of the
previous formula [19]. In conclusion we note that the expressions for all the
processes considered above are in agreement with ones given in the Particle Data
Group compilation [29].

H.9. Using of Color Basis. Projectors. 1) For scattering of quarks of
different 	avors, matrix element can be written as

Mt = ū3γμu1ū4γμu2, (208)

with (ta)j2j1 = χj2+
3 (ta)j2j1χ

j1
1 , χj describes color state of quark. The system

of two quarks has two basis color projectors 3 × 3 = 3̄ + 6 antisymmetric and
symmetric ones

P 3̄
i2i1;j2j1 = N3[δi1i2δj1j2 − δi1j2δi2j1 ],

P 6
i2i1;j2j1 = N6[δi1i2δj1j2 − δi1j2δi2j1 ], (209)

N3 =
1√

2N(N − 1)
, N6 =

1√
2N(N + 1)

.

Schematically their properties can be written as

P j
a,a′P

k
a′,b = P j

a,bδjk. (210)

Performing the convolutions, we obtain

(RtP̃
3̄) = −N3NCF ; (RtP̃

6) = N6NCF ,
(211)

P̃ j
i1i2,j1j2

= P j
j1j2,i1i2

,

and

Rt = NCF [−N3P3̄ + N6P6],
∑
color

|Rt|2 =
N2 − 1

4
, (212)

using as well ∑
spins

∣∣∣∣1t Mt

∣∣∣∣
2

= 8
s2 + u2

t2
. (213)

For the differential cross section, we obtain

dσq1q2→q1q2

dO3
=

α2
s(N

2 − 1)
8N2s

s2 + u2

t2
. (214)
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2) For the matrix element of scattering of different quark and antiquark, we
have the form

M q1q̄2→q1 q̄2 =
1
t
MtZt, Zt = (ta)j1j2(t

a)i2i1 , (215)

Using the projection operators P (0), P (8)

P (0) =
1
N

δi1j1δi2j2 , P (8) =
2√

N2 − 1
(tc)j1i1(t

c)i2j2 (216)

and the relevant convolutions

(ZtP̃
(0)) = CF , (ZtP̃

(8)) = − cF√
N2 − 1

,

we obtain

Z = cF P (0) − P (8) cF√
N2 − 1

,

(217)∑
color

|Z|2 =
1
4
(N2 − 1).

The differential cross section is

dσq1q2→q1q2

dO3
=

α2
s(N

2 − 1)
8N2s

s2 + u2

t2
. (218)

3) For scattering of quarks of the same 	avor, matrix element can be writ-
ten as

M q1q2→q1q2 =
1
t
MtRt −

1
u

MuRu, Ru = (tb)j2i1(t
b)i2j1 , (219)

using the previous results, and

(RuP̃ 3̄) = N3NCF , (RuP̃ 6) = N6NCF . (220)

Matrix element has the form

M = NCF

[
−

(
Mt

t
+

Mu

u

)
N3P

3̄ +
(

Mt

t
− Mu

u

)
N6P

6

]
. (221)

Using
∑

spins

MtM
∗
u = −8s2, we obtain

∑
|M |2 = 16NCF

[
s2 + u2

t2
s2 + t2

u2
− 2s2

Ntu

]
(222)
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and the cross section cited above. The similar calculation can be done for the
case of scattering of quark and antiquark of the same 	avor.

4) Consider at least the process of annihilation of quark and antiquark to two
gluons. Matrix element (three Feynman amplitudes contribute) has the form

M = v̄2

[
R2

1
t
ê4(q̂1 − q̂3)ê3 + R1

1
u

ê3(q̂1 − q̂4)ê4−

− 2
s
(R1 − R2)[−(q3e4)ê3 + (q4e3)ê4 + (e3e4)q̂3]

]
u1, (223)

with R1 = (tbta)r2r1 , R2 = (tatb)r2r1 . We use the color basis

c1 = N1δabδr1r2 , N1 =
1√

N(N2 − 1)
,

c2 = N2D
abc(tc)r1r2 , N2 =

1√
(N2 − 4)(N2 − 1)/(2N)

, (224)

c3 = N3if
abc(tc)r1r2 , N3 =

1√
N(N2 − 1)/2

,

which satisˇes the normalization condition (cic̃i) = 1, i = 1, 2, 3. The convolution
necessary to us is

(R1c̃1) = (R2c̃1) = N1NCF , (R1c̃2) = (R2c̃) = N2
(N2 − 4)(N2 − 1)

4N
,

(225)

(R1c̃3) = −(R2c̃3) = N3
N(N2 − 1)

4
.

So we have

R1 =

√
N2 − 1

4N

[
c1 +

√
N2 − 4

2
c2 +

N√
2
c3

]
,

(226)

R2 =

√
N2 − 1

4N

[
c1 +

√
N2 − 4

2
c2 −

N√
2
c3

]
.

As a check, we use

(R1R
+
1 ) = Tr tatbtbta = NC2

F , (R1R
+
2 ) = Tr tatbtatb = −1

2
CF . (227)

Both relations are fulˇlled. Matrix element can be written as

M =

√
N2 − 1

4N
v̄2

[
O1

(
c1 +

√
N2 − 4

2
c2

)
+ O2

√
N2

2
c3

]
u1, (228)
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with

O1 =
1
t
ê4(q̂1 − q̂3)ê3 +

1
u

ê3(q̂1 − q̂4)ê4,

(229)

O2 = −1
t
ê4(q̂1 − q̂3)ê3 +

1
u

ê3(q̂1 − q̂4)ê4 −
4
s
[−(q3e4)ê3+(q4e3)ê4+(e3e4)q̂3].

Using the relations

1
4

Sp q̂2O1q̂1O
+
1 = 2

t2 + u2

tu
,

(230)
1
4

Sp q̂2O2q̂1O
+
2 = 2

[
t2 + u2

tu
− 4

t2 + u2

s2

]
,

we obtain for the summed on color and spin states matrix element square:

∑
|M qq̄→gg|2 = 2

(N2 − 1)2

N
(t2 + u2)

[
1
tu

− 2N2

(N2 − 1)s2

]
. (231)

Cross section is (for N = 3 it is in agreement with [29])

dσqq̄→gg

dO3
=

8α2
s

27s
(t2 + u2)

[
1
tu

− 9
4s2

]
. (232)

H.10. Color Projectors for gg → gg. For the process

g(pa, ra) + g(pb, rb) → g(p1, r1) + g(p2, r2), (233)

we use the color basis [30]

Rra,r1
i,rb,r2

, i = 1, 2, 3, 4, 5, (234)

obeying the conditions

Rra,r1
i,rc,r3

Rrc,r3
j,rb,r2

= δijR
ra,r1
i,rb,r2

. (235)

Explicit form of them is

Rra,r1
1,rb,r2

=
1

N2 − 1
δrar1δrbr2 , Rra,r1

2,rb,r2
=

N

N2 − 4
drar1cdrbr2c,

Rra,r1
3,rb,r2

=
1
N

frar1cfrbr2c,

(236)

Rra,r1
4,rb,r2

=
1
2
[δrarb

δr1r2 − δrar2δrbr1 ] −
1
N

frar1cfrbr2c,

Rra,r1
5,rb,r2

=
1
2
[δrarb

δr1r2 + δrar2δrbr1 ] −
1

N2 − 1
δrar1δrbr2 −

N

N2 − 4
drar1cdrbr2c,
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with fabc, dabc Å structure constants. We need as well Ki = Ra,b
i,a,b. They are

K1 = 1, K2 = K3 = N2 − 1, K4 = (N2 − 1)(N2 − 4)/2, K5 = (N2 − 1)(N2 −
2)/2 − 1. For the case N = 3, we have Ki = 1, 8, 8, 20, 27; i = 1, 2, 3, 4, 5. We
remind here the expansion of the product 8x8 = 1 + 8 + 8 + (10 + 1̄0) + 27 to
the irreducible representation of color SU(3) group [31].

Performing the conversion of color matrix element given above with the color
projectors, we obtain for the matrix element squared

∑
|M |2 = 256H ,

H = H11 + 8H22 + 8H33 + 20H44 + 27H55 =

=
27
2

− 9
2

[
su

t2
+

st

u2
+

tu

s2

]
, (237)

where we use [30]

H11 =
9
16

[
1 − tu

s2
− st

u2
+

t2

su

]
,

H22 =
1
4
H11, H44 = 0, H55 =

1
9
H11, (238)

H33 =
27
64

− 9
16

[
su

t2
+

ut

4s2
+

st

4u2

]
+

9
32

[
u2

st
+

s2

tu
− t2

2su

]
.

The same result can be obtained in terms of matrix element given above M =
IT + JK + LQ. Using the relations [31]

dpiqfqjrfrkp = −N

2
dijk ,

dpiqdqjrfrkp =
N2 − 4

2N
fijk, (239)

fpiqfqjrfrkp = −N

2
fijk,

we obtain

M = (T − Q)[a1R1 + a2R2 + a5R5] + (a3T + b3Q + c3K)R3,

a1 = N, a2 =
1
2
N(N2 − 1), a3 = a2, b3 = −1

2
N(N2 + 1), (240)

a5 = −N3, c3 = N.

Note that the structure R4 drops out. The further squaring of the matrix element
leads to the expression for the differential cross section given above.
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