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The paper presents short historical reviews of the processes of lepton-pairs production in pe-
ripheral interaction of leptons and ions at high energies. The orders of magnitude of the QED and
QCD cross sections with the production of two and three jets are given. The technique of the analysis
is described in detail based on the parameterization of Sudakov 4-momentum tasks and writing the
amplitude in an explicit gauge-invariant form. Based on this formalism, the differential cross sections
of the QCD processes gp — (999)p; qp — (¢QQ)p; gp — (9QQ)p were obtained, including
the distribution on transverse momentum component of jets fragments. It was shown that the role
of the contribution of «non-Abelian» nature may become dominant in a particular kinematics of the
final particles. The kinematics, in which the initial particle changes the direction of motion to the
opposite one, was considered in the case of heavy quark—antiquark pair production. In the appen-
dices, the details of the calculations and the explicit form of the differential cross sections are given.
Some extended comments on the frequently used cross sections of the pair production in the case of
two-photon scattering are presented. In particular, the degree of the longitudinal polarization of the
positron, at the interaction of polarized initial electron, was calculated. The method of calculating the
cross sections of the 2 — 2 processes in QCD, based on the isolation of irreducible color structures,
and the method CALCUL of spiral amplitudes were discussed in detail.

JI H Kp TKMii MCTOpHYECKHI 00630p NMpOLECCOB POXIEHHS JIENTOHHBIX I P TpHU mnepucepnde-
CKOM B3 MMOJEHCTBUM JIENTOHOB M MOHOB IIPH BBICOKMX ®Heprusx. IlpupeneHbl MOPAIKM BEIUYUH
ceuennii KOJI n KX]I ¢ poxaenueM IByX M Tpex CTpyid. JIeT JIbHO M310XEH TEeXHUK H JIM3 IIpo-
LIeCCOB, OCHOB HH i H 11 p MeTpu3 uu Cyn KoB  4-HMITy/IbCOB 3 JI UM M 3 MHCH  MIUTUTY/bI B IBHO
K MOpoBOYHO-MHB pu HTHOM Buae. H ocHose atoro copm mm3m  momydensl aucepeHnn IbHble
ceuenus npoueccos KXI gp — (999)p; qp — (¢QQ)p; gp — (9QQ)p u Ap., B ToM uHcie
P crpefiesieHus 110 TONEPEYHbIM KOMIOHEHT M HMMITyJIbcoB (p rMeHTOB cTpyidl. Ilok 3 HO, uTO ponb
BKJI ]I «He GeleBoii» MpUpOIbl MOXET CT Th JOMUHHPYIOIIEH B ONpeIe/eHHONH KHHEM THKE KOHEYHBIX
4 cTULl. P ccMOTpeH KHHEM THK , B KOTOPOM H 4 JIbH 6 Y CTHMIl H3MEHSAET H NP BIEHHE JBUKEHHs
H 00p THOE B CIIyd € POXIEHMsS TSXENoil KB PK- HTHKB PKOBOM I pbl. MccienoB H KHHEM THK
HPOTOH OTA YM. B NpHIoXeHusx X Hpl JET JIM BBIYMCIAEHUI M ABHBI BUI JuchhepeHty JbHBIX ce-
yeHuid. JI HBI KOMMEHT UM K BBIBOLY 4 CTO HCIIONIb3YeMBIX CEYeHHil oOp 30B HUS I p M CIIyd S
JBYX()OTOHHOTO p ccesHMs. B u CTHOCTH, BHIMMCIIEH CTeNeHb MPOJOIbHON MOAPH3 MM MO3UTPOH
1pU B3 UMOJEHCTBUM HOJIAPH30B HHOTO H 4 JIBHOTO 3/1€KTPOH . JIeT JIbHO p CCMOTpPEHBI METOX P C-
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yer cedyeHuil mpoueccoB 2 — 2 B KXJI, OCHOB HHbIi H BbIIEICHUM HENPUBOAUMBIX LBETOBBIX
cTpykryp, u Meto CALCUL cnup JIbHBIX MIUTHTYA.

PACS: 12.20.-m; 12.38.-t
INTRODUCTION

It is known [1] that the differential cross sections of small-angle elastic (and
inelastic) scattering processes do not fall with increasing the center-of-mass total
energy /s, s = 4E2. The reason for this is the contribution to the cross section
from the photon exchange between charged particles. Similar phenomena take
place as well in the strong interaction sector, where gluons take place instead of
a photon.

The simplest processes of this kind are the scattering of a charged particle
in the external field of nuclei and the elastic scattering of one sort of charged
particles on the other one. The total cross sections of these processes do not
exist due to contributions of large impact parameters, which correspond to small
scattering-angles. The momentum of the virtual photon in the scattering channel
(t channel) tends to the mass shell. So the virtual photon in the ¢ channel becomes
a real one. In the case of inelastic processes a + b — a + b + X, with the set
of particles = belonging to one of the directions in the center of mass a or b,
the cross sections are finite [2-9]. Besides, the square of 4-momentum of a
virtual photon is negative and restricted from below by the magnitude of some
quantity of the created set of particles, invariant mass square of (ax), (bx). The
finiteness of the transfer momentum module caused the so-called Weizsicker—
Williams enhancement [7]. Namely, the region of small momentum transfer is
realized in the appearance of a large logarithmic factor L = In(s?/(m%m3)).
For modern colliders, this factor is of an order of 20. It often turns out that the
consideration is restricted to the WW approximation. This means the accuracy of
the order of 14+ O(1/L). The cross sections of inelastic peripheral processes are,
as usuall, large.

The background caused by the events of the large-angle kinematics of pro-
duced particles determines the accuracy of peripheral cross sections

2
1+O<9,m?>. (1

™

So, the total accuracy of theoretical estimates is better than 5%.

The cross sections of interaction of photons with the target will also not
fall with energy when taking into account the contributions of higher orders of
perturbation theory (PT).

The main attention in our paper is paid to the double gluon emission and
production of the pair of heavy quarks with subsequent jet production, in the
fragmentation region of the incident particle.
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Our paper is organized as follows.

First, we give an estimation of the magnitudes of the cross sections of
several processes in high-energy ep — (eab)p, gp — (qab)p collisions in the
fragmentation region of a projectile e,q. In Sec.1, we give a short historical
introduction to the study of the processes of lepton-pair production in high-
energy lepton—lepton, ion—ion collisions. In the attached Appendices we do
comments to these results. In Sec.2, the so-called «infinite momentum frame»
method of description of high-energy processes based on the Sudakov para-
meterization of the 4-momenta of the problem is developed. The differential
cross sections are expressed in terms of physically measurable energy fractions
and the transverse component of the final particles. In Sec.3, the simplest
QCD processes with 2-jet production are presented. In Sec.4, we consider the
process of heavy quark—antiquark pair production in collisions of projectile with
the colorless target. In Sec.5, the QED process of double bremsstrahlung is
studied. In Sec.6, a similar QCD process of emission of two gluons is con-
sidered. In Sec.7, the specific details of jet production on a fixed target are
considered.

In Conclusion, we discuss the results and pay attention to the relation of the
contributions of Abelian (QED) and non-Abelian nature. It seems that in the
case of large magnitudes of transverse quark momenta, the role of non-Abelian
contributions dominates. In Conclusion, we also discuss the «jet reflection»
phenomena. It consists in the change of the direction of motion of the light
projectile to the opposite one in the case of heavy-pair production.

In Appendices A—C, the explicit expressions beyond the WW approximation
as well as in the WW ones are presented. In Appendices D, E, we give a
short derivation of the famous formulae for the light- and heavy-pair production
in lepton—(anti)lepton collisions. In Appendix F, we develop the method of
description of heavy object production in the fragmentation region of one of
projectiles. In Appendix G, this method is applied to the problem of transmission
of the longitudinal polarization of the initial electron to the positron from the
pair created. Appendix H contains the detailed derivation of the amplitudes and
the differential cross sections of the simplest QCD 2 — 2 processes. The chiral
amplitudes method is essentially used.

The cross section of the heavy-pair production in electron—proton and quark—
proton collisions can be written as

4
~ L
MG
(2)
B 2 2
5= (1QQ)p &SQL‘I ~ 20 nb.

TG
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We put here /s = 3 TeV, Mg = M = 1.5 GeV. In this case L, ~ 30. For a
process of two-photon and two-gluon production we have

a*L,
k2

0.817%(677);0 ~ ~ 10.8 pb;

a2l )
s—q

g (a99)p o ~ 50 nb, k? =1 GeV?

™

for typical transfer momentum squared k2 = 1 GeV?2.

1. QED PERIPHERAL PROCESS, PAIR PRODUCTION

In 1934, the cross section of pair production in high-energy lepton collisions
was calculated in the so-called double-WW approximation [8]

28a* s 2 s
o _ _ 2
Oge—eéell — 277rm12 <1Il <mg>> In <ml2> ) l= E sy, S= 4E”. (4)

In 1937, G.Racah [9] published the total cross section of the process of pair
creation in the collision of charged particles with the charges Zie, Zse; p1, p2 —
the 4-momenta and mi, my — masses of the initial particles:

28(Z1Z202%)? 2p1p
02 a7y Zaeto = %UB —Al’+Bl+ ), =l m117n22,
178 1
A= — ~6. B = —(7n* ~ 15.
55 ~ 636, 55 (77 +370) ~ 15.7, ®)

C = —21—8 [348 + 12—37r2 - 215(3)] ~ —13.8, £(3) = 1.202.

In papers by Baier and Fadin [10] as well as Lipatov and Kuraev [11], the total
cross section of the production process of an electron—positron pair in electron—
positron collisions (only two exchanged photons) was obtained

Oete_—etfe_ere. =

By e (1ur 0y

mmz |27 T 2r? 9 6 27
401 52 12 916 72 676
+75<3>+§€1“2+2—7€‘2—7} ~

4

~ - [1,03p° — 6.6p° — 11.7p+104], p=1In—=. (6)
™m m2

e
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In the case of production of a muon pair we obtain

o —a_4 @3_1_782_ @4_1_47(_2 +§21+
ete-—etemen= = ome o7” T or” T %1 T 36 ) 97
14 , 562 64, (567% 5855 21472 51403
g Pl g _<9 6 162)l_ )+ 576 T am6 |~
4
[0 B
~ W[L 03p> + 26.6p° — 56p — 342],
™
p=In—, I=In—2~107, &@3)=1.202 @
m2 m2

These formulae are in agreement with ones obtained by G. Racah [9]. The
method used to obtain the cross section consists in imposing some cuts on the
transverse momenta and energy fractions, which in principle can be used in
experiment. Adding separate contributions, we obtain the results given above. In
Appendix A, we give the sketch of derivation of the LL formula and discuss the
experimental cuts.

Note that in the case of production of a heavy-muon pair, the corrections of
the order (mZ/s)L™ must be taken into account. Really, for /s < 1 GeV, the
cross section calculated theoretically is negative.

In 1970, in paper by Brodsky, Kinoshita, and Terazawa, a special case of
production of a heavy object by two virtual photons in electron—electron collisions
was investigated [12]:

ot = (2) (m 2 [ (2),

4M?2

with 2M being the mass of a created system and
9, 1
f(z)=(2+2) ln;—2(1—z)(3+z). )

The BKT formula in the modern language desribes the Drell-Yan process. Really,
it consists in the probability P to find the virtual photon in the electron:

dki ki _dp

’Y ~J
dWe (kla 51) dra (k% 4 mgﬁ%)Q 1— B

P'Y’ P'Y — +
1

e ﬁ%

and the conversion of these probabilities with the cross section of a hard sub-
process vy — F' (see details in Appendix E).

1
9’
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In this step, it is useful to keep in mind the following integrals:

1

doy [1=p1 1] [l=aa 1] 1 .
/ﬁ{ 32 +§}{ a2 +§}4—22f(2)7 fraz=z=—. (10)

z

The parton language can also be applied to describe the processes in the frag-
mentation region. General formula for the cross section for the fragmentation
region is derived in Appendix F. In Appendix G, this formalism is applied to
the problem of transferring the longitudinal polarization of the initial electron to
the positron.

Besides, the two-photon mechanism mentioned above, the so-called «brems-
strahlung» mechanism, must be taken into account. It consists in the emission
of a light-like virtual photon by one of the initial particles with a subsequent
conversion to the lepton pair. When calculating the differential and total cross
sections, the effect of the Fermi—Dirac statistics must be taken into account.

Other QED peripheral processes, single and double bremsstrahlung, take into
account the radiative corrections as well as the details of calculation and can be
found in reviews [13-15].

It results in a nonleading contribution. Really, the contribution from the
diagram corresponding to the single-photon production mechanism [15] is

ot [(77 , 1099\ 223 17 163 , 5435
c=2 0 (L2 ) 20g) - g o2 220
7P WmQ[(547T 81) 13803 - g2+ 5+ T
4

«
=2—(0.5p—1.7), (11
——5(0.5p ), (11)

where factor 2 takes into account both the kinematic situations when a jet moves
along both the initial directions.

The effect of identity of final particles taken into account, contributes to the
total cross section (both directions are taken into account) [17]

20t p 9 13591 , 2729
Cint T05mm? 374£(3) 0n“In2 + 50 " D
4
o
=2 —0.14 12
——(=0.14)p, (12)

here oy, is the contribution from the interference term associated with the identity
of particles in the final state.

For electron-pair production and muon-pair production, the specific effect of
the charge-odd contribution to spectral distributions takes place. It is caused by
the interference of 2-gamma mechanism and the bremsstrahlung one.
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Similar effects take place in the process of bremsstrahlung and pair production
by a gluon and a quark on the proton or the nuclei. We will restrict ourselves
below only to the cases when a proton or nuclei remain to be a proton or nuclei.
No excitation of the target is allowed.

In the case of large transverse momenta of the jet particle component, the
subtle effect of the double logarithmic contributions in the fragmentation region
disappears.

2. KINEMATICS OF PERIPHERAL PROCESSES,
SUDAKOV PARAMETERIZATION

First, we remind the general Sudakov technique to study the peripheral kine-
matics of the QED process e +p — (e +1+1) + p of creation of a heavy charged
lepton pair in high-energy electron—proton collisions in the fragmentation region
of the electron, B

e(p1) + p(p2) — e(ph) + Ua-) + Uas+) + p(p3),
pi=pi =my, pi=p’=m’ ¢i =M (13)
s = 2p1p2 > M2 ~ mf, > m2.
The peripheral kinematics or the electron fragmentation region is defined as
s> —¢° = —(pa — ph)* ~ M?. (14)

It is convenient to use the Sudakov parameterization of momenta. For this aim,
we introduce two light-like 4-vectors constructed from the momenta of the initial

particles ps = po —p1(m,2,/5), P1=p1— p2(m2/5) [17]

q=aps+PBp1+q1, qr=0asPr+rip1+qie, Py = P2+ apr+pL,
(15)
a|pr =a1p2 = 0) Cli = _32 < 07 ﬁ% = pg = Oa 2p1ﬁ1 - m25

where a is the two-dimensional vector transversal to the beam axis (direction of
P1, center-of-mass reference frame implied), and =,z are the energy fractions
of the scattered electron and the heavy-lepton pair, and z+x_ + x4 = 1. Below,
we will omit the tilde sign. According to the energy-momentum conservation

law, we also have
2

m
q=p+q- +qq, 04:04'+04++047—?~ (16)
The on-mass shell condition for the scattered proton p/22 — mf, = 0, being written
in terms of the Sudakov variables, reads (one must take into account the relation
2papa = m3)
2 2 B q’ +mpa

(p2—9)* —mp =saf—q* —mja—s3 =0, sf=—-—F—t— (7
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One finds for ¢ = saf — q>:

2 1 02m2 2

¢ = _%ap ~— <q2 + %mi) : (18)
We conclude that in the case s; # 0, a virtual photon has a space-like
4-vector and, in addition |¢?| > ¢2;, = m2(s1/s)?. The quantity s; = 2gp; =
(P} +q+ +q-)? —¢*> —m? = sa in the WW approximation q = 0 coincides with
the square of the invariant mass of the jet moving in the initial quark momentum
direction. Using the on-mass shell conditions for momenta of the scattered muon

and the created pair of heavy quarks,

10/12 = so/at:—p2 zmi = mQ7 qi = SO+ T4 —qu = M27 rH+ary+x_ =1,
(19)
we find (in the WW approximation)
§1 = sa = ! - (1 —2.)q% + 24 (1 —24)g® +
TTLT_ + a

+22_2,q_qy +miz iz +2(l —z)M?]. (20)

The matrix element can be written as

(4ra)?
2

M= 9" I (p1) TP (p2), 1)

with J(¢P) being the currents associated with electron and proton blocks of the
relevant Feynman diagram. The main contribution arises from the longitudinal
components of the tensor g"” = g1 + (2/s)(pspYy + phpl):

2 LV
g = ;p‘gpl- (22)

So, we obtain for the squared module of the summed over spin states of the
matrix element

1
(4%)

1
o — Z ‘gjl(fp)ptlf

> IMJ? = (8ma)?s® —5 00,

(23)

2 2

e
i :Z‘gtfﬁ 'p3

The quantities ®(¢?) (the so-called impact factors) remain finite in the limit of
high energies s — oo. In particular,

2

1
oW =% ‘gﬂ(l)/z)ﬁlu(lb) =2 (24)
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The electron current obeys the gauge condition

4. J (1), ~ (ap2 4+ q1)uJ @ (p1), = 0. (25)

Using this relation we obtain for our process

2 2,2
s* (dra)?q
|M|? =25 =
BSOSy
where e = q/|q| can be interpreted as a polarization vector of the virtual photon.
To obtain the differential cross section,

2

1
gJi e | (26)

; 1
doeP—(ejetp — — § : M2+ 127, 27
g 8s | | 2+n; ( )

we must rearrange the phase volume of the final state (the electron remains to be
a spectator, whereas the scattered muon is accompanied with n particles)

Ly, = (2m)*6* (P1 +p2 =Py —ph— Z Qi) X
L dpy o dg,
2E1 (27)3 2E5(2m)3 " 2E;(27)3”

(28)

including the additional variable ¢ as

oy n — dTaynd'q6" (pa — q — pb). (29)
We use the Sudakov variables:

d3qs

4 8 2
d*q = 2clozclﬁcl q, TR

= %daidmiquié(saixi — qzi — M?). (30

Performing the integrations over the «small» Sudakov variables «, a1, we obtain

1 dx; -
dloyn = — (27)*(27) 32 =1 2qIIr —2 @2 q;, =1 (31
20 = —(2m)*(27) Aty e ) S
It can be noted that the cross section does not depend on s at large s and tends to
zero in the limit of zero recoil momentum of the spectator electron g — 0. The
last property is the consequence of gauge invariance of the theory. Once being
integrated over the recoil momentum, the cross section reveals the so-called WW
enhancement factor
Q2
2 g2 2,42
I / q°dq Y

=In
(g2 + m3a?)? m3s?

—1=L,—1, (32)
0

where Q2 ~ M? is the scale of transfer momentum squared in the process.
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3. 2-JET QCD PROCESSES IN QUARK (GLUON)-PROTON COLLISIONS

The differential cross sections of the processes

q(p1) +p(p2) — a(p1) + g(k) + p(p5), (33)
e(p1) +p(p) — e@}) + (k) + p(ps) (34)
differ only by the color factors from similar expressions in QED.
2
do®?—(9:9)p — N~ 1dgez)—>(e“y)p7 (35)
with
203d%q d?p’ dz X
do®P7P = — ————— R[1 B B
7 w@p(pDy TSP )
(36)
RY = DD'¢*(1 + 2%) — 2am?*(D — D')?,
with
2x
By = ==[A%q” cos (2,) + Bp? cos (2¢p) + 2ABlallp| cos (¢g + 2p),
. (37
By = 2-[A%¢”sin (2¢,) + B*p? sin (2i,) + 2ABlal[p sin (2 + ),
y
and
1, 1 ,

and B 3 are the effective Stokes parameters of a gluon. Besides
D=m’z"+(p—a)? D'=m’a+(p—qz)’ (39)

where p is the transverse component of the scattered electron momentum; q is
the same value for the recoil proton; ¢,, ¢, are the azimuthal angles between the
transverse component of a gluon and p, g.

For the process of quark—antiquark pair production by a gluon on a proton
we have

B 3
do9P—(QQ)p _ 1_2a O d?q d’qda
2 72(¢2)2 ’
1
¥ = G emiaa- (D - D) + @@} +22)DyD-},  (40)

Dy =qi +m® aq++q-=aq.

N2-1 1
The first factor is the color factor N1 o = 3
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4. PRODUCTION OF HEAVY CHARGED LEPTON (QUARK) PAIRS
IN ELECTRON (QUARK)-PROTON COLLISIONS

We will distinguish two mechanisms of the heavy-fermion pair creation, the
so-called «bremsstrahlung mechanism» (see Fig. 1,a) and the «two-photon» one
(Fig. 1,b). The matrix element of the process

w(pr) + Y (p2) — p(p)) + Qg-) + Qlas) + Y (ph),

2 2 2 2 2 2 2 2 @D
pi=pr =m", py=py =my, q¢.=M
in the kinematic region of p particle fragmentation can be written as
5 2s
MY =WRY = (4ra)? = Nyx
¢
1, _ I oy
X %u(m)Quu(pl)u(Q—)%U(%) + %U(Q—)RAU(QHU(Z%)VW(ZH) , (42)
1 2
1- R
¢ = (g +a0)*, @ =1 =01 Na=_bph)hla(p).
0 q > > q
Ep)
0 0
9
q q 0
q
q
a b

Fig. 1. Production of heavy-quark pair
Here we adopt Sudakov’s parameterization of the 4-vectors
pr=apatapi+pL, qr=oxpatripi+qel, ¢=apztqi. (43)

The first term in the square brackets contains the Compton subprocess e(p1) +

v*(q) — e(p}) + v(¢q1) amplitude u(p})Q u(p1) with (we use here the on-mass
shell conditions for the initial and final electrons (quarks))

1T R R,
Qu= ﬁw(pl +q+m)ps — —=p2(p) — G+ m)y, =

D
1 z ’quAﬁQ ﬁ2§7u
_—5(—0—5) Wt T T
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where we use the notation

1 1
d/ D=—[(p — 2 _ 02 — d
TTLT_ ’ [(pl q) m ] Tox_ ’

D' =(p1+q)°—m’=

d=d+zrie q® —2zy0 q(qy +q-), (44)
d=mPriz 2+ M 2T+ qqo_T- + Q2474 +2(qiq_ )z 24

So we obtain

T4 N PN
Qu= ﬁ [szpy, + xdyugpe + d'Pagy], p=d—d. (45)

The two-photon amplitude contains a Dirac subprocess v*(q1)+7*(q) — Q(q_)+

Q(q4) with the amplitude @(q—)Rxv(q+)

By o At MG —at M

A A D, R

Again, with on-mass shell conditions for the heavy-fermion pair it can be written
as

Y- (46)

NP2 | P20 Ty _ T

Ry = — = — — — 47
A = SYAT1 D, DR D, D (47)
with the definitions
1 1
Dy=—[(g—qy)*—M?*=—d;, D_=-[(g—q ) —M’]=—d_
+ [(¢d—ay) ] o T [(¢—q-) ] o )

dy =d+zr,(q® —2qq-) + z1z_(q” — 2q(qs +q-)), )

d-=d+zr_(q® - 2qq4) + w42 (q” — 2q(a+ +q-)),
1 _
¢ = —p)?=——[p*+7°m], p=a-a —a.
With this notation we have

R

=74 [sz4x_p1yx — T—d-—AGP2 + T1diPagm], p1=d- —di. (49)
Jr —

The square of the matrix element summed over spin states has the form

_ 8 2 _ _
SO ERDYE — 2 16(4ma) R, R9? = Ry + Ray + Roaa,

(¢%)?
1 1 . . 1 NP
R s2(2)2 1 Sp (G- + M)vu(d+ — M)%Z Spp1QupQy,
1
50
11 . U ) (50)
Ray = gy 1 5P 4+ M)BW(@s = M)Ry 3 Sp (91 + m) (P +m),
3
2 1 R R 1 A .
Roaa = ey 1 Sp (G- + M)yu(g+ — M)R;\FZ Sp 1 Q1A
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It is important to know that all the quantities entering into R9% do not depend on
s and are proportional to g2 in the WW limit g — 0.

Keeping in mind that in the combinations p>G and §p, one can replace
G — §., one may use the relations needed in calculating the traces (we neglect
the contributions of an order of m?/M? compared to the ones of an order of
unity)

Pl=pt=p5=0, ¢i=¢ =M, ¢ =-0,
2P2P1 =S, 2P2PI1 = s, 2P2Q+ = 8Ty, 2}72(17 = ST, 2172(1 = Oa 2P1q = 07

qq- =—9qd-, qqy = —qd¢, g¢p} = —qp,
) ) (51)
2q4p)=—[2"M? + (24P — 2q4.)?], 2¢_p)=——[2*M* + (2_p — xq_)],
TT4 Tx_
/ o 1 4 1 2 2 1 2 2
2pipt = —¢3 = —p°, 2p1g+ = —[M"+day], 2pig- = —[M"+q’],
T Ty T_
1
G =——@"M?*+r?, r=2.qy—2,9, P=q-q;—q_.
IE+£L',
The differential cross sections have the form
. 204 ROQ deidr_ d®q d*qy d*q_
doY = (cQQ)Y _ &—d%, dya — T4ar— d7qd7d+ d°q- (52)
7w (q2)? rryr— W™ ow™ W

In the case of processes with a quark instead of a muon, we must take into
account the quark color degrees of freedom

_ 2 _
do?Y ~aRQ)Y _ C’cdgdae}/*(eQQ)Y, (53)

with Ceo) = (N? —1)/(4N?), where we also take into account the averaging over
the color of quarks. The explicit expressions for Ry, Ray, Roqa are given in
Appendix B. In the double WW approximation, the contribution to the differential
cross section has the form

doeP—(QQe)p  4T2 q2
o drds = SEtErne), 2= (54)

Exact formulae are given in Appendix B.
The function

1 37 4 2682 + 24322
@ —= = = = (b — —
(Z’“ v ) (2) =3 1+ 2)"

is presented in Fig. 4.
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Table 1. The function A, _ (y1,y—) (defined in (55)) is presented for different values of
the final quark (lepton) transverse momenta y and y_ for the quark-pair (lepton-pair)
production (in units of M)

A, _]0.0279]0.0295]0.0314]0.0326[0.0348]0.0377]0.0405]0.0421[0.0462[0.0513
ye | 4 3 3 2 2 2 1 1 1 1
y_ | 5 4 5 3 4 5 2 3 4 5

In Table 1, the charge asymmetry defined as

2 1 v 1
Ay (Y4, y— oy 0) = |:—2RV\(}€7V:| /[%T)QRSVW—’—(%T)QR%\%W )

%ids
) (55)
93
b=
is presented at the symmetric point * = x_ = x4 = 1/3, ¢ = 7/2 for several

typical values ;. < y_. This quantity has a value of an order of Ay~ 1072,
For the use of y4 > y_, the quantity A;_ changes the sign.

5. DOUBLE BREMSSTRAHLUNG
IN ELECTRON-PROTON COLLISIONS

In the lowest order of perturbation QED theory there are 20 Feynman dia-
grams describing the double bremsstrahlung process (see Fig. 3)

e(p1) +p(p2) — e®)) + (k1) + v(k2) + p(pa), (56)

i.e., emission of two hard photons in collisions of the high-energy electron with
a charged heavy target (heavy lepton). We will restrict ourselves to the con-
sideration of the emission from the electron line only. The set of six Feynman
diagrams provides the gauge-invariant set (see Fig. 1,a,b). With respect to the
exchanged photon they split into two independent subsets of Feynman amplitudes,
both gauge-invariant. The relevant matrix element is

2s(4ra)? 1
%N;u(pi)wu + O21]u(p1), 57

with (see details in Appendices C, D),
1
(1D

Mer—(erp —

1
(2) D

012: N1— N2+ N37

(58)



JETS PRODUCTION IN PERIPHERAL INTERACTIONS OF HIGH-ENERGY LEPTONS 1879

and

1
Nj + N3,

Oa1 = 1D’

1 1
@0 @)
N{ = pa(p) — G+ m)ér(pr — ka2 + m)éa,
N} = é1(p + k1 + m)p2(p1 — ko + m)éa, (59)
N = &1(p, + k1 + m)éa(p1 + G+ m)po,

1,
N = gy(plz)ply(pz)-

Here e; = e;(k;) are the polarization vectors of hard photons. It can be checked
that the expression for M2 ~(2Y)Y turns to zero in replacing py — ¢ as well as
e; — k; which is the consequence of gauge invariance.

We adopt below the Sudakov parameterization of the relevant 4-vectors

g=opz+qL, ki=o;ps+xip1+kiL,
, , (60)
p; =ap2+2xp1+p1,

and use the notation and relations (different compared to the previous section)

1 U1 1 29
1 = 2 k = — 2.2 k2 = 2= 2/ — 2 /k 2.2 2 —
(1) = 2p1k1 - [m”z7 + ki] o (2") = 2pi ko g [m?z5 + r3] o

1 1 z
(2) = 2p1ks = —[mPad +13) = L2, (1) = 2k = —[mad 417 = ——

T2 T2 TT1 rry’
d 1
D=—[(p} —q)®—m’] = , D'=(pi4+q?-m?= d,
T1T2 TXx1T2

ro = ko + 2a(ky +q), r1 =Z2ky +z1(ke +q), 61
d =d+ q*Zx129 — 20122q(k; + ka),
2

d=m*x1x2T + xlflkg + "Egif'gk% + 2z122k 1Ko,

1
2k1ko = -

1
(z2k1 — 71ka)?,  2p1p) = —[p? + m?2?],
122 x

W+@2)+1)+(©2)=D+D".
The expression for the matrix element given above can be written in a form

to display the explicit gauge invariance, which is suitable especially for
investigation in the (WW) [7] approximation. For this aim we note that
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the combinations

.z T1 1
=m0 we) T @p
x To 1
B=op " oo oo (62)
_ 1 x
~5°D

turn to zero in the limit g — 0. Excluding the term containing the denomina-
tor (1), (2) we can rewrite the expression for O;5 in the form

1 A A, 7 A A 7 ~ A A A
O12 = E—[Rl@(p'l + ka2 +m)p2(p1 — k1 +m)éy + régpaéi+
1
+ c1é2(ph + ko + m)[B161GP2 + Pagér]+
+ dy[F12Gé2 + wéadpe](P1 — k1 +m)é1], (63)
with
TIr1T
"= dil/ 2p, p=d—d = z122[~7¢* + 2q(ki + ko)),
(64)
1 (z22)? T2
cl = —- = —_-——\
! ng/ ’ ! yld

A similar expression for the set of other Feynman diagrams (can be obtained from
the first one by the replacement k1, e <> ko, €2) is

1 . - . ~ R JOA
021 = :E_Q[RQel(pll + ki + m)pQ(pl — k2 + m)eQ T réipzeat
+ 261 (P + k1 + m)[Toéaqpa + Padéa]+
+ da[Tapaér + wé1dpa)(P1 — ko + m)és],  (65)

with (21)? )
T2\ T T1Ty
=———, do=— . 66
Cc2 Zld, ) 2 de ( )
The matrix element squared summed over spin states is
4.2
Z | MeP=(e1P|2 = MR’Y’Y
m(¢?)? ’
(67)

1 . R R .
R =(1+ PlQ)@ Sp [P 0120103 + 90129105,
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From a topological point of view, it is convenient to write down R, as a sum
of planar and nonplanar Feynman diagrams for the cross section

R = (1 + P12)[Rpl + Rnpl]. (68)
The differential cross section has the form
4
doep—(epr — — 2

(69)
o d:L’ldiL'Q d2_q d2k1 d2k2

Tr1xs T 0T ™

dryy

Factor 1/2! takes into account the identity of photons in the final state.
In the WW approximation we have

doer—(evV)p oL, —1) 1
2 = P — R
’/del de dyl dy2 d¢ An Ve (yla Y2,T1,T2, ¢)a

k2
e

with M being the mass of a heavy quark in the scale parameter for the values of
the transverse momenta of photons (gluons).

(70)

6. QUARK-PROTON COLLISION: EMISSION OF TWO-GLUON JETS

The matrix element of the process of two-gluon jets production in a peripheral
quark-colorless fermion target collision (see Fig.2),

q(p1) + Y (p2) — q(p)) + Y (h) + g(k1) + g(k2), (71)
has the form
3250 q q ., 1_ ., 1
M= 7 JIN, J9=u(p))Ru(p1), N=EU(p2)TuU(p2)p1,

(72)
R =012Ry + O21 R + (R — R1)O3, Ty =Fiy,+ 0uaq.Fs,

where Ry = (t%t*),pr,, Ro = (t°t*),yr,, With 7o(r1) describing the color states
of the scattered (initial) quark. Here the quantities O3, 02 were obtained above
(see (59) and (65)), with the replacement k1 — ¢4, k2 — q—, where we imply
e1 — €%, es — e and

. 2 1, A~ ~ Crab 1 Crab (A ~ A

O3 = —= | —=p2(p1 — ¢+ m)V? + =V*(p1 + G+ m)p2 | ,
qi D D
R R (73)
Vb = (kreP)e® — &P (koe®) + ka(e®e?), qf = (k1 + k)2
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[ -
- -

Fig. 2. Emission of two gluons

The quantity q% is presented (26) and (35). It can be checked that the matrix
element obeys gauge invariance, namely, it turns to zero if one replaces ps — ¢
and e;(k;) — k;. The expression for the matrix element at Ry = Ry = 1,
coincides with the QED result [21]. Below we will use the expression for Os in
the form

2 N N N
05 = =5 =2 wspV + d'paqV + 2dV gpa),
) b (74)
V = &%(k1€®) + ka(e%e?) — e%(koe®), p = 2x122qQ.

To work with the irreducible color states, we use the projectors in color space

Cl — —1 6ab67‘27"1)
N(N2-1)
2N abe (4c
02_\/(N2_1)(N2_4)d (t )7’27‘17 (75)

2

_ s =  rabciyec
Cs =1 N(N2—].)f (t )7"27“1'
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These projectors obey the equations

Czé — ( b (cqu)T"N"Q b ) (76)
! () rima) T = () ram )
CiCj = 6ij, 1, =1,2,3. (77)
Here (A),,,, = (A),,,, and summation over a,b is implied.
In our case*
N2-1] N2 4 N |
Ry = N Ci + 5 Cy + ﬁCg
(78)
N2 -1 N2 -4 N
Ry = IN Ci + 5 Cy — ECB
The expansion on irreducible color representations is
~ ~ - N2 -1
R= Cl(R01)+CQ(RCQ)+Cg(RC3) = N X

X

V2

N2 -4
<C1+ 5

So the matrix element squared summed over color and spin states can be
written as

N
Cz) (O12 + 021) + —=(021 — O12 — 203)] . (79)

Z M = 32s%(16m%aas)? N? — 1
- (4°) AN

Abel non-Abel
F = FAbel ¢ p :

) ) (80)
FAbel — N — 2 N
2

(14 P12)(Rp1 + Rup1) + 7[(1 + P12)(Rp1 — Rup1)],
Fron-Abel — 9N2[Ras — Raoq + Ranal,

*As a check we have (R1R1) = (Rgf%g) = Tr¢otbibie = NC%; (R1R2) = Tr¢e¢btatd =
—(1/2)CF. These relations are fulfilled.
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with
1

Fp1 = 452

Sp 15/1 O121 OE >

1 . .
Rnpl = @ Spp/1012p102+17

1 oo

R33 = 12 Sp p,03p105 , (81)
1 oo

R31p = 12 Sp p; O3p1 075,

1 NP
R3o = 12 Sp 103105 .

In the case 3 = 72 = = = 1/3 and ¢ = 7/2, FromAbel and F are presented
(see Table 2) for typical values of y1, yo.

Table 2. The functions F™°"APe! (1) ) and F (y1,%2) (defined in (80)) are presented
for different values of the final gluon transverse momenta y; and y-

Frmon-Abel|( )39810.0845(0.0561/0.2309[0.1315]0.0812|1.0521{0.4257{0.2074|0.1135
F ]0.0415|0.0882/0.0591]0.2422|0.1396[0.0872| 1.117 |0.4625|0.2306|0.1294

v 4 3 3 2 2 2 1 1 1 1
Y2 5 4 5 3 4 5 2 3 4 5

The differential cross section is

(aas)? N2 -1 F

do®¥ (19T — S N2 (q2)2d74~ (82)

The explicit expressions for F' as well as for R, are too cumbersome. Nev-
ertheless, they are suitable for further analytic and numerical integration when
obtaining different distributions.

As some probe of QCD, the quantity

Fnon—Abel

A% = (83)

can be considered as a specific for QCD deviation from the QED process of the
double bremsstrahlung. It is presented in Table 3 in the WW approximation for

Table 3. The function A% (y1,y2) (defined in (83)) is presented for different values of
the final gluon transverse momenta y; and y2

A9910.83960.83180.8024 | 0.8167 | 0.7755{0.7382 | 0.7755 | 0.7034 | 0.6393 | 0.5805

i | 4 3 3 2 2 2 1 1 1 1
y2 | S 4 5 3 4 5 2 3 4 5
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x=1x =29 = 1/3, ¢ = /2, for different values y;,y>. For values ¢? ~ M2,
the non-Abelian contribution dominates in A99 (see Table 3). For large ¢2,
A9~ (M? /7).

7. THREE-JET STRUCTURE IN PERIPHERAL COLLISIONS
ON A FIXED TARGET

In the case of jet production with a projectile on a fixed target (nucleon), an
additional wide-angle jet can be created by the recoil target particle.
Consider for simplicity the photoproduction of a pair qgq process on a nucleon,

v(k) +p(p) — qlg-) + qlgy) + 9 (p"), (84)

s =2pk, k* =0, p= M(1,0,0,0).

As the Sudakov expansion basis we use k& = w(1,1,0,0) and p1 = p —
(M?/s)k = (M/2)(1,-1,0,0). For the transferred 4-momentum g = p — p’ we
have

qg=ak+Bp1+q.. (85)

Solving the on-mass shell condition of a recoil proton we find
P2 — M?=saf —q®> — M?B—sa=0, sa=q> (86)

Considering its longitudinal and transverse component we have

1
2 2 22
= . 87
P =a + 5ld] (87)
So we have
q?
sin”f = —, (88)
p
with (p’, k), and
p’ 2 cosf
—| = . 89
M sin’ @ (89)

The recoil jet penetrates in a rather wide cone 6 ~ 60°. Relation (72) was first
obtained in [28].

8. THE PROCESS ¢P — (9QQ)P

Another process where the non-Abelian structure of QCD manifests itself is
the crossing process to one considered in Sec. 3

g(k) + P(p2) — (Q(q+)Q(q-)g(k1)) P (p5). (90)



1886 AHMADOV A.I, KURAEV E. A.

The matrix element can be written as

My =MD + P + MO + M@+ M+ O D Ml(S))“”’gl)
My = (MO + M + M + MY + M+ v + M+ D),

M = ﬁ(q_)[tctaM(l) + t“tCM(Q)],wv(q+)eZ(k;)ef,(k;l),
u® Ylg= + ki + m)yu(—g+ + g+ m)p2
m

@t k)2~ ml(—gs + @R —m?]
(1) _ Wwlg= + ki +m)pa(—gs +k+m)y,
My"= = Ro, 92
2 T (o Ry R me] o2
MO = p2(g- — gt mw (=g th+mhy _ oo

[(—q+ + k)2 —m?][(¢- — q)* —m?]
Vi [ma(=ar +q+m)pa | pa(qy —q+m)ya

M(l) -I-M(l) — BA — R ,

’ (k=R (e +@?-m? (g - )2 - m? !

M@ = Vulg- =k +m)y(—g4 +qg+m)ps _ or.

(=g = k)? = m?|[(=q+ + ¢)* — m?]

M@ = Dt~k m)pa(—g — kit m)yy _ o
° [(g- — k)% = m?|[(—g4 — k1)? — m?] ’
M@ = P2 =gt m(cg =kt m o
O Tl —9r—mAl—gs — k)2 —mz] ¥ 93)
2) @ Vi [n(=ar+q+m)p2 | p2(g- —qg+m)nm]
M7+ Mg™ = (kl—k)Q[ (_q++q)2_m2 (qi_q)g_mg = Qu,

Vp)\l/ = _(kl + k)kg;u/ + (Zk - kl)l/gp,A + (Zkl - k)p,g)\l/;
MOk = M2k = 0.

It can be checked that both contributions M%) and M (?) obey the gauge condition

N2 1 N2 1
M ~tet* MY oo M@ = N {[ol + 5 CQ} x

N
x (MM + M@y 4 —e. [M(l) - M(Q)} } 94
( ) ok (94)

MY 4+ M® =Ry + Ry + R34+ R+ Q1 + Q2+ Q3 + Qu,

(95)
MY — M@ = (R, + Ry + R3) — (Q1 + Q2 + Q3) + 2Ry,
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Table 4. The function A (y+,y—) (defined in (98)) is presented for different values of
the final quark (lepton) transverse momenta y and y_ for the quark-pair (lepton-pair)
production (in units of M)

A10.0428]0.117]0.0652]0.4489]0.193[0.0925] 0.0574 [ 0.84]0.275] 0.1167
ye| 4 3 3 2 2 2 1 1] 1 1
y_| 5 4 5 3 4 5 6 | 3| 4 5

5 NZ-2_ R .
| MOFTERQPE x —— = Sp g (My + Ma)dy (M + Ma)"+

N2
+ - Sp G (My — Ma)G4 (My — Ma)* = A™", (96)

My +My=Ri+Ro+ R3+ Q1+ Q2+ Q3,
My — My =Ry +Ry+ Ry — Q1 — Q2 — Q3 +2Ry.

o7

Again one can define the asymmetry A, which appears because of non-
Abelian nature of QCD. This asymmetry is defined as (see Table 4):

Anon-Abel

A= Atot

(98)

Anon—Abel — 2N2{Sp (ij4(j+RI+
+SpG—(R1+ Ra+ Ry — Q1 — Q2 — Q3)d+ BRI}, (99)

Yo (G- + k1)pa(—Gs + k)Y,

R = Wwld ) (=ds + D)o

! d_1d4q 2 d_1dyy,
o ﬁQ(qu - (j)’yu(_qAJr + k)')/u - ’Vu((jf - k)'yu(_(jJr + (j)ﬁQ
RB - ) Ql - )
d_gdoy d_rd_,
(100)
_ ’Y,u((j— - k)ﬁQ(_d+ B kl)’}/u o ﬁQ(Q— B (j)’y,u(_(j-i- - kl)%j
QQ - ) QS - )
dpdy(—ky) d—qdy(~ky)
Vl v —q 9)D p A— —q
Ry = Y [W(=G +DP2 | P2(G- — D]
d d+q d—q
CONCLUSION

In conclusion, we remind a remarkable property of the kinematics of processes
in the fragmentation region. It is known as a «cumulation» phenomenon
(see Fig.3). It consists of events with production of a heavy quark—antiquark
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Q pair, accompanied by the «reflected»
scattered parent light particle. It was
q QO known in the processes of production of
a muon—antimuon pair in the fragmenta-
tion region of an electron in electron—
positron collisions [26]. It turns out
that the electron «accompanying» the
pair created in the kinematic region near
2] > > the threshold moves in the direction op-
posite to the initial electron direction.
Fig. 3. The «cumulation effect» In the case of production of a heavy
quark—antiquark pair by one of the va-
lence quarks from the initial proton, the parent (light) quark is effectively
reflected. So the jet created by this quark corresponds in fact to two jets,
one consists of the pair created and two spectator quarks from the initial pro-
ton and the other, moving in the opposite direction, created by the «reflect-
ed» quark. To see it, let us consider the kinematics of a peripheral process
a(p1) + a(p2) — Q(pa) + Q(py) +a(p}) + q(ph). Using the Sudakov parameter-
ization (3) with

D1 :E(].,].,0,0), D2 :E(l,—l,0,0), pL = (0,0,I’), (101)
we obtain for 4-momentum of the scattered quark

1 /_m2+p2

Epl_ (15_15070)_’_1‘(1)170)0)_‘_(O7Oap) (102)

s
Comparing its component along the z axis from the first and second terms we
find that for

m? + p?

2 2
_ i + 1
15 < 0, pP°=(Pat+Pv)’, (103)

the «reflection» phenomenon takes place. For instance, assuming p? ~ M? >
m?, we have © < (M/2E) ~ 1. This situation can be realized near the threshold
of the heavy-pair production.

The expressions for the differential cross section of emission of two hard
photons were obtained in the WW approximation in [24] by using the explicit
expression of the double Compton scattering cross section obtained in [25].

Using the formulae given above, the energy—energy correlations of the jets in
the final state can be constructed. It consists in the construction of an average of
the product of the energy fractions of the heavy quarks. As well, the azimuthal
angle correlation, which is the average of 2(q4;)(q—;)/+/s, can be investigated.
Energy spectra, total cross sections, and sum rules for different processes in the
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fragmentation region can be investigated in full analogy with the QED program
for colliding eY = (eX)Y [13].

The approach developed here can be used for description of jets in the
fragmentation region with creation of K, K states when the heavy strange quark
and antiquark are created. The jets originated from D, D and B, B can be
considered as well.

In the plot (see Fig.4), the dependence of the (QQ-pair production cross
section from the so-called «two-photon» mechanism is presented. It has rather a
large cross section and can be measured in experiment.

10 -_I TR AT T SN SN SN AN SN T T NN SO TR SR SN SO T S |
0 0.2 0.4 0.6 0.8 1

z

Fig. 4. The ®(z) (defined in (54)) as a function of z

In Table 1, the charge-asymmetry effect due to interference of the «brems-
strahlung» and «two-photon» mechanisms is presented as a ratio of the corre-
sponding contributions to the differential cross section. This quantity can also be
measured in spite of its rather small value |A;_| ~ 0.02—0.03.

In Table 2, the contributions from the so-called «planar» and «nonplanar»
contributions to the differential cross section of the double bremsstrahlung process
in electron—target collisions are presented.

Table 3 gives the ratio of contributions with the QED-type gluon splitting
contribution to the process of two-gluon jet production in the quark—target colli-
sions. Its rather large expected value A99 can also be measured in experiment.
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Appendix A
HEAVY-QUARK PAIR PRODUCTION BEYOND
THE WW APPROXIMATION

The explicit expression for Ry, is

Bor = ( erd’
— 22w (qq-) — 2z2_(qqy) — 224 (prg-) — 2z_(p1as) + 22° (qq- )]+
+2x(1 + z)(qq+)(aq-) + 2224 (qq-)* + 2zz(qq+)?]]+
+ 2072 [M*(p1p) + (pra) (Phg-) + (prg-) (s )1+
+ad?PIM+ 2y (prg-)+o-(prg)]+2° P’ [M e+ 2y (Phg-)+o- (Phar))+
+22%dp[-M?q® + (qq4 ) (M? = 2(piq-)) + (aq-)(M? — (piq4))]+

+2xd p[(M*+ a4 (prg-)+z—(pras))(ap)—2((pra+) (aa- )+ (pra-)(aq+))]];
(104)

2
) ad' (@ 20z o () - ww (pha-) — vr- (Bhas)-

with the notation given above (see (25), (26), (32)).

The quantity Ry, enters into the differential cross section in combination
Rog/((¢3)?) with ¢3 = —(m?z? + p?)/x. To see rather delicate compensations
in the region of small ¢3, p?, we must rearrange the electron tensor as (here we
use the gauge condition g2, (¢ )Q,v(g+) =0 and ¢2 = Tp1 — p1)

g 2 1

1 . R
1 Sp (B +m)vu (1 +m) Ve = 2p1P10 + = G = EPL/LPLV + qgguv- (105)

2 2
In this form, the compensation is clearly seen. So we have
2 2
T 2 a5
Rag = (1+P;) (d+d> [ERM + 3R2gb] , (106)

with
2
—zy2” prd_[224 (pq-)(pq) + p*(ar)]+
1 1
+ §xix+d2,p2q2 — Z(a:+x_)2d+d_(2(pq)2 —q’p?), (107)

Rogy = —piqi(wyaw)? + 2z 2% prd_(qr) — 2% 2 d° @7,

1 1
Roga = §(x+fc—p1)2 [2(pq—)(pq+) + —quz] —

where we remind

pr=—2z(qr), r=z_-qy—-249-, p=9-Q, Q=ay+q-,
(108)

1
q% = [MQJ?Q + r2].
Ty T—
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At least

TT4+T—

Roqd = —2—
o = qdrd  d_

-y
x [m+d+p[w—(p1q+)(qq+) +(aa-)(Z+(prg4) + (Pra+)) — - (P14 )d’]+
+ x+xd+d[%q2[—M2$ — 2 (pras) + 20 (aqs) — o (piph)+
+ 2y (p1g-) —x(aq-)] — 74 (qqa-)(qqs) — x(qq+)2} +
oidod [éqQ[—M%c —wr_(pray) — 2lasq_) + 204 (aa )+

() — e (pph)] — 7 (qq_)(qa) - x+<qq>2] ] n

+ 2z 2 pp1 [M?(p1p}) + (pra+)(Pra—) + (p1g-) (Pig+)]+
+zzyz_dpi[(qa)(M? = (pig-)) + (aq-)(M* — (pigy)) — @* M)+
+d'proyx_[—(qqe) (M + 2_(p1g-) + 2—(p1g4)) — (qg9-) X

<M 20100+ 1 m0-) + PO -0y + .00 )|
(109)

with p = x,2_[-7Zq® + 2(qQ)]. The operator P, _ acts as Py_ f(z4,q5;
r_,q-) = f(z-,q-;74,94).

Appendix B
DISTRIBUTIONS IN THE WW APPROXIMATION,
HEAVY-FERMION PAIR PRODUCTION

Differential distributions in the WW approximation are

5 2a4 5 dry dx_ d
doeP—(€QQ)p _ %(Lq _ 1)3%%M dqidﬁ%a

) ) 5 (110)
QQ _ br 2 odd
o = gy o+ (g i+ g e
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where we imply ¢ = q%; ¢ is the azimuthal angle between two-dimensional
vectors q4,q—,

1 . 1 _
¢ = ——[@M*+7), ¢ =—=[m’" + Q7
T4T— €T
(111)

7"221‘2, r=r-q+ —r4+9q-, Q2:Q27 Q:q++q—a

and

Ry = (142, ) (222)

X {dQ [$+$Q2 — x4 (phg-) — 2z (prg-) + 2% (g4 q- )+
1 1
+ 5:5(1 +)(q49-) + x4 2qt + 5:5(1 +2®)M? 422 (prg-) + 2x2x+(p'1q)] +
+ 22 Q%M (prph) + 4(p19+) (P1g-)] + 2224 2-d(Qas) [M? — 2(phg-)]-

—ayr_2dQ®[M? + 224 (p1g-) +2(p1a+)] — 2$2$+$—d(QQ+)(p1Q—)} ;
(112)

r\2| 2 1
Rigw = (1+Py-) (@) {EPQRa + 5(1334 ;

1 1
Ry = (zawyx_)*r® <(Q+Q) + —Qf) +azialdey(vqo) + 7]+ Sd*alay,

2
(113)

Ry = —2(zx o )?r*¢? — 2xx 2 dr? — 2® x d?,

TXLT_
d4
— ez + 7 )(arq-) —zrpe g —ddq? —ada (14 2)(piph)—
—azy (14 2)(q19-) + (z24)*(prg-) — zziz-(prgy) |+
+arz_dQlrzyz_(pigr)as +q- [zr1 T4 (p1gy) + x4 (phgr)]] -

Ryw=(1-P4-)

1
P[P (La)ar, —ao o (o) ()~

1 _ _
- Exdr [—qi [M?zi2_2+zzio_(Pig-) + 2422 (p1g-) + z42” (prgy)]—
—q-[M?zix &+ zeie (pigy) + er2- Ty (prgy) + -af (pig-)]] -

—2(zy2_2)*(Qr) [M?(p1p}) + (p1g-) (Pia+) + (pras)(Pra-)] |- (114)
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Here we use the notation

1 1 1
/ 2 2 2 2 2
= — = —[M V= —1[M
(p1p7) 2mQ . (p1ay) 2x+[ +qi], (p1g-) 2x_[ +q7],
1
/ — M2 2 / ) = M2 2
(Pha+) pr. (M= +7r3],  (Pig-) Drry [M*+r2],
1
(g49-) = Soen [M*(2% +22) +7%], 1° = (z_qy —24q-)%,
2 1 2-2 2 2 1 2-2 2
q1 = [M z -I-T], QQ:__[mx +Q ]7 (115)
T4T— €T

d=m’z o T+ M*xz + qix_i_ +? 2 Ty + 2,2 _qrq_ cos

12 = (Zia- +2-qi)?, i = (T-as +r1q-)?,

1
(Plpi) = %Q27 (4+9-) = q+q- cos ¢.

The differential distribution in the WW approximation is

_ 2 4
doeP—(€QQ)p _ 70: (Ly — 1)x
1 1 2 dry dr_ do
_Rbr _R29 _Rodd + d 2 d 2 - 116
@t t g tww + g ttww | o das dason (O

We put as well the contribution to the differential cross section from two gamma
mechanisms integrated over both virtual photon transfer momentum variables

S L W 22 [222 1
2 _ 27 " 14+ P, )= |2 (L, — 1)Ryo + ~xL,R
daydr_dg? m x:mrx,( 7 )dé fQ( p—1) a0 + 5 TEplbo |
1
Rao = (zz42-)2¢3 2%[q}y — @3] + Tasa— dog + 5d§x+xi, (117)

Ry = 2(zw42-7)° % g3 + 2(Z2_ ) w24 dog’ + diai 2,

where

x
Glo=——I[M*+ 3], do=z[m’z o +a(M*+q})],
(118)
M2 M2g2
= yE
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The restrictions

(119)

are implied.
The distribution as a function of the two-gluon invariant mass square was
considered in paper [27].

Appendix C
DISTRIBUTIONS IN THE WW APPROXIMATION,
TWO-PHOTON AND TWO-GLUON EMISSION

Differential distribution for the process €Y — (eyy)Y in the WW approxi-
mation is

. 20 d
Ao P = ZE (L 1)(1+ Pro)[Rpy + Rupl] di2 dk2=2,
b 2
2.2 2 2 (120)
— arocg N°—-1 N=—-2
doging " = =2 = (L = DL+ Pra) Ryt + Rupll —5—+
N2 dé

+ 7[(1 + P12)(Rpt — Rup1) + 4(Ra3 + Raa1 — Raio)] dki dk3

% .

The expressions for R; are

1 1
R,y = =1 Rup = — Ly,
pl j‘% pls pl T17y pl
1 1 (121)
Rss = I3z, Rso1 = ——1I321, Rz =——1Is12,
) T
and
I = - Sp 0195105,
pl = 753 SPP101201013,
1 . .
Inpl = @ Spp/1012p105rla
1 NP
I33 = 12 Spp; 035107, (122)

1 VI
I391 = @ Spp,103p10;17

1 NP
I310 = 12 Sp 1 03p1055.
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The simplified expressions for effective vertices are

O19 = Ryéa(p + ka)pa(p1 — k1)é1 + réapaés+
+ c162(P 4 ko) [F161GP2 + P2gér] + di[T1paGés + véadps)(pr — k1)ér (123)
and

Og1 = Roéy (P + k1)pa(p1 — ka)éa + réypaéat
+ 21 (P + k1) [T2é2dPs + P2déa] + da[Tapadér + xé1dpo)(p1 — ko)éa, (124)

2 N N R
Oy = q2x;§2ppr’ﬁ-dﬁbqu+ﬁndVﬁﬁﬂ,
R ' . (125)
V = éi(kie2) + ka(ere2) — éa(kaer),
with
2(zafad)? 5 2(zafad)? 5
R1 = Wq[drg — $$2k1 ], RQ = Wq[drl — J).ﬁleQ],
2zw2 72 2. 2 = 2, =~
e dQ, d=m"Txixs + kizaZa + k32121 + 22122k12,  (126)

p = 2r1729qQ,
where we use the notation k‘f = k%, k12 = kiko,

r = z2k; — x1ko, Q = k1 + ko,

(127)
r; = Toky + z1ko, ro = T1ko + 20k
and use, besides,
z1(zx9)? Tox?
Cl::_lilen d = - 228
rid kid
To(rz)? 173
= — d —_
2 2d T TR
) ) ) (128)
/ 2 2 2
(plpl) sz ) (Pl 1) T 19 (Pl 2) Lo 2

1 1 1
(prk1) = x—xlri (prk2) = x—mrga (k1ks2) re.

2%1%2
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Appendix D
REPRODUCE NOW THE LANDAU-LIFSHITZ (LL) RESULT

In the case of not too large invariant mass square of the subject I’ created
by two photons, cross section is

00 1
a? dsy dp S1
- 22 s —F N N - =
rale) =% [ T e [ TANE)N(). =
4M?2 s1/s
(129)
21 dz o+ 67 o <M 2
0= [T o
0

Here we choose the upper limits of transverse momentum o to be large compared
with electron mass and do not exceed the mass of the created pair. Performing
the integration on ; we obtain

2 7 d 9 2 2
Tuon(s) = o5 / Lo (s) [gLi —-2L2 + (1 + %) Ly - %} ,

(130)
Ley=ln>Z,
S1

This region gives the leading contribution to the cross section. The regions when
one or both transverse momenta exceed the mass of the created system produce
lower orders of L, and as well the terms proportional to powers of In o. The
total contribution of all kinematical regions does not depend on the auxiliary
parameter o. It is cited above. To restore the coefficient of the cubic term, we
remind the explicit form of the total cross section of production of lepton pair by
two teal photons

2

1 F (5) = 0, (5) = [<2+ % - %) In (m—i— \/W) -

xm?
1 T
_ (1+_2> - s=da?m? (131)
X X

Using the result

7 dsi ra? 14
L — 132
/ 51 U(Sl) 2 97 ( )
4m?2
we arrive to LL result .
28 « 3 S
7ot = 3 " (39
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Appendix E
REPRODUCE NOW THE BRODSKY-KINOSHITA-TERAZAWA (BKT)
RESULT

In the case when the energies of the scattered electrons are essentially less
than the energies of the initial ones, the formulae for total cross sections must be
modified. We start from the usual expression for the matrix element

dror _ _ w
M = TqQU(pi)mLU(pl)U(p’z)%U(pz)T‘ : (134)
142

First we will use the 4-momenta of virtual photons instead of the momenta of
the scattered electrons, besides, we accept the Sudakov parameterization of 4-mo-
menta of the problem, for the phase volume of the scattered electron moving in
direction close to the momentum of electron p;

d>p' s
p,l =d'q16*(p1 — ) — 1) d*Pi5((p — 1) — m?) = SdPqq doy dfs,
2€ 2
(135)
5(—8@1(1 — ﬁl) — m2ﬁ1 — q%)
Applying the Sudakov parameterization
qr=a1p2+Gipr + @1, qipe = qip1 =0,
2
_ m _
Pr=p1—p2—, pi=m? 2ppr=m? ¢, =-qi <0, (136)
s Gt
1 1— 51 )

we obtain .
d’p} dfi 1 odéy
= —dqy—. 137
21— 2N (137)

The square of current, associated with electron e(p;), summed on spin states and
averaged on the azimuthal angle ¢, is

(X a et ath o)) =4 { |20 + et ). 138

More convenient formulae can be obtained if one uses the gauge condition
¢\ Ty = (B1p1 + ¢11)Tyw = 0. In such a way we obtain

1- 8 1}

+_

73 (139)
1

<Zﬂ(P&)'VuU(m)ﬂ(p’l)fymu(pl))*> _ _ﬁqﬁgglu {
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In the similar way we obtain for the current associated with electron e(p2):

/ — * 4 2 v 1-— 1
(X )@ (o)) = =722 | 12224 2 a0

Here we use the similar Sudakov parameterization g3 = [(2pP2 + aap1 + qa.1,
writing the phase volume as

1 wdq?dpB; mdq3 das

dr = d
T2m)5 21— B1) 21 — az)’ )
2m)t d3qy dq_
E%;G 25* g0 @t =g =)

Let us introduce, as a new variable, the invariant mass square of the created
system s1 = (g4 +q_)? =~ saa B

d
/ das dBr6(sanfr — 4M?) = / ds, ﬂ (142)
4A42 s1/s
Note now that the quantity
1
/ 3or LTy ) g™ g7 dy = a7 (s1) (143)
S1

coincides with the total cross section of production of the system F' by two
photons.
For the differential cross section we have

o? Q2 do?q do2 3 st
do — & 149193 aq3 /d ¥y 2y 144
o 2 (qf—l—mQﬁf)Q(qg—i—mQa%)Q 510 (51)82 ) (144)
4M?2

with

- dpy [1—-/ 1l—as 1 _ S
f—/ B [ 7 +5H *ﬂ’ =i P

s1/s

The calculation leads to

- S—Qf(z) F2) = (2422 2 —2(1— 2)342), 2=S°L  (146)
452 ’ o z ’ s

Integration on the transversal momenta of virtual photons in the region 0 < g2 2 <
E? leads to the famous formulae of BKT

o= () (mip) [ () o

4M?2
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Appendix F
CREATION OF A HEAVY PARTICLE
IN THE FRAGMENTATION REGION OF ONE ELECTRON

For definiteness, we consider the process ee — (eF')e

e(p1) + e(p2) — [e(P1)Q™ (¢4)Q™ (¢-)]e(ph). (148)

For azimuthal averaged squares of currents, summed on the spin states, we have

1- 8 1}

+_

st 2

(X al pwntp) ao ato))”) = — 2% |

(149)

— — * 4qggvu1
Z u(ps)vpu(p2) (U(pa) v, u(p2))™ ) = T2
2
In the last expression, we use the gauge condition ¢57T},, = (aap2+g21 )" T, = 0.
Expressing the phase volume of the scattered electrons as

d3p/1 _ dﬁl 7Td 2 (%)

oF,  1- 42 W\ 27

(150)

d*pl m dér
=day~dq3 | =—
om), ~ 2t ( or )’

we remind that the quantity (; is of an order of unity, whereas s is small. The
threshold condition must be fulfilled

$1 = saofB1 > s¢n = AM2. (151)

For the contribution to the total cross section we obtain
oo

oo = () (m m£)2 [ Srerene (),

4M?2
(152)

o(z) = 41n% —(1—=2)(3—=2).

Appendix G
TRANSFER OF CIRCULAR POLARIZATION OF THE INITIAL
ELECTRON TO THE POSITRON IN THE FRAGMENTATION REGION

This phenomenon is similar to «handedness» when the initial polarized par-
ticle causes polarization of the fermionic fragments of the jet created by this
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projectile, or reveals itself in kinematical correlations of momenta of different
pions from the jet.

The matrix element of the process e(p1, A)e(p2) — [e(p])e(q-)e(qg+, A1)] %
€(ph) has the form

dra® 1

PE2 (q—)Opw (1 = 5)v(g+ )u(ps) vou(p2). (153)

N =

a(py)vu (1 + Mys)u(p1)

For the summed on the spin states square of the matrix element, we have

Z|M|2 (47T0é) {lsp ((i7+m)0,1((j++m)0* qlguu (1—61 +l>+

Y1-5 (2 2

q1q°(1 = Br)
>\ S S v , (154
+ Pg- Qﬂq+QV’y5 pplQl’Yu’Y 75}(q%+ﬁfm2)2(q2+m2a§)2 ( )

with
1 " .
Qu= mpqrw — S1T-VuqP2 + 5174+ P24Vl
20 a
) (155)
s1= ——[q® + am?],
l‘+.1?_

witha = (Z42_)/z, z=1—-z=x4 +x_.

Averaging over the azimuthal angle d2q, permits one to extract the general
factor s2q2, which will be absorbed in the total expression for spectral distribu-
tions on the energy fractions of fermions in a jet. Using the expression for phase
volume in the fragmentation region

d’py py &’y g (27)" ¢

dr, = 4 ST ey —a.) =
4 25/125/2254,_25_ (277)2 (pl + D2 D1 P2 q+ q )
= (2m) 5L dpy d*q &g, d2q* (156)
8sxxyx_ w ’
we first extract the leading logarithmic factor L L, with
L — / dq?q? I / dqq? .
J (@ +mgot)>” ) (a? + miad)?
With the logarithmic accuracy, we have
s
[&
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For the unpolarized part of the cross section we obtain

2

4 dq? dr_dx(1 2
iy a- z_dz(l+27) zix_ (23 +2?)si—

2r " st(wyw_)? 272

dounp =

j2
—22%s3q% + ZWq'i [Z%q® + m?(7? + 2x+x)]} . (158)
Integration over dq? leads to

ot yxdr_ dz(l+ 2?) "

2
e

dounp =

2m TAT LT

2
X | —2z4x_ + =7 + #* + 2wz ]| . (159
+ 3 TR [ +x-]| . (159)
Here we imply the threshold restriction (4m?/s < x4 +x_).

Consider now the contribution to the cross section associated with the po-
larized part of the matrix element. Performing the extraction of factor q? and
the relevant azimuthal averaging procedure, we must do a shift transformation
q- =q- +(z-/7)q1 and q4 = —q- + (v-/T)qs.

In terms of the shifted variables, the quadratic form s is s1 = (Z/(z4x_) %
[@% + am?]. In a similar way, we obtain

4 2
a* 5 dqZ
dO'pol = %L mx dx_ dl‘)\($+ — x_)x

2y —x_)?

1
X |—zix_s3 + 5(2532 —zrir_)s1q% — (@®)?|. (160)

T4

We note that compared with the unpolarized case, the terms proportional to the
electron mass squared do not contribute. Further integration leads to the final
result

ot 5, 2dr_dx

dopol = A (xy —a_)[42% — b 2] (161)

120m?2 " 4T Z_xqx_

The degree of polarization transferred from the initial electron to the final
positron can be found as (see Table 5)

<>\> positron dgpol

= = F(x_
A daunp (.13 ,J)),
) (162)
4z -5 _
Flz_,z) = (x4 —x_) a Tt .
(@24 Daya_ |—6zpa_ + 2324+ —— (T2 + 2z42_)

T4T—
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Table 5. The function F(z_,x) (defined in (162)) is presented for different values of
the final lepton transverse momenta x| and z_ for the lepton-pair production (in units
of M)

T T+
- 0.25 0.3 0.35 0.4 0.45 0.5

0.25 0.853

0.3 -0.853 0.705

0.35 -0.705 0.6315

0.4 -0.6315 0.6308

0.45 -0.6303 0.786

0.5 —0.786
Appendix H

PROCESSES OF TYPE 2 — 2 IN QCD. HIGH-ENERGY LIMIT

Processes with interaction of quark, antiquarks, and gluon of type 2 — 2 are
investigated in the approximation of high energies and finite scattering angles. All
particles assumed to be massless. The summed on spin and color states of matrix
elements square and the relevant cross sections are presented. Chiral amplitudes
method and projections on the definite color states are used.

Below we will consider, in some detail (with the pedagogical aim), calculation
of matrix elements and the differential cross sections of the simplest processes of
type 2 — 2 in the frames of Quantum ChromoDynamics (QCD) with gluons and
quarks taking part. We imply the acquaintance of the reader with basic knowledge
of Quantum Field Theory [6].

H.1. Process 2 — 2 in QCD. We will consider the processes

a‘(p17l(l) +b(p27lb) i C(p?nlc) +d(p47ld) (163)

with p;-4-momenta of particles, p1 + p2> = p3 + p4 and [; incorporate the infor-
mation on the color and spin states of particles. We imply the center of mass of
the initial particles reference frame py + p2 = 0 with the kinematic invariants

5 =2p1p2 = 2p3ps, t= —2pi1p3 = —2paps, U= —2p1ps = —2pap3,
s+t+u=0, s=4E% t=—-s(1-0¢)/2, u=—-s(1+¢)/2, (164)
p? =0, i=1,234,

with F being the energy of one of initial particles, ¢ = cos 6, § = (p1, p3) being
the angle between the direction of 3-momenta of initial and the scattered particles.
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We will calculate below the summed on spin and color states of matrix
elements squares of the typical processes 2 — 2

STIMPE=g">" Y bl (165)

abed l1 lzlgl4

with g2 = 4ma,-strong coupling constant.
H.2. Process qq¢ — gq. Consider first the process of scattering of quarks of
the same flavor

Q(pla )‘17 Zl) + Q(p27 >‘27 22) - Q(p?n >‘3a Z3) + Q(p47 >‘4a Z'4)7 (166)

with A\; and 1; being the chirality A; = %1 and color of quarks i = 1,2,3 —
yellow, green and red states of quarks. Matrix element has the form

M)A — (43, (19) 19 My — (1°)41 (%) 30 Mo,

111921314
1

My = 2 (ps) ™ (p2)T (pa) ™ (p2). (167)
1 B _

My = =™ (pa) 7™ (p1)a™ (ps) ™ (p2),

and (t%)s1 = est%eq, (t%)s2 = €4t%s, t* is the generator of the color group
SU(N); and ey, the color spinor. Chiral states are defined as [19]

ut = w+u, at = UW=, ot = W, ot = VW4,
) (168)
Wy = 5(1 +75), wiws =0, witwr=1 wiws=ws.
The completeness relations take place
up)Fa(p)* = wep,  v(p)*o(p)* = wep. (169)

Using this relation, we calculate the definite chiral amplitudes in such a way (we
use here the short-hand notations ugz = u(pg)’\3 and the similar ones):

1

M —
! tR14Ro3

Uz Ypw4 U1 Riatayuwius Ros,
! ) (170)
Ryy = t1powiug, Roz = Ugprwyus.

Using the completeness relations and Dirac equations p;u(p;) = 0, we obtain

N A R 252t
Mt = Sp P3YuP1D2PaYuP2D1wy = Riskes’ (171)

tR14Ra3
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In a similar way, we obtain
252u

4 _
M, = ,
ul13R24

) ) (172)
Ri3 = t1powyus, Roy = toprwyug.

For two remaining nonzero amplitudes with \; = +, M;"~ 7~ My "~ we have

1 2u?
Mt = ———a Py Py3 =
! t P14 Pos YTl i P14t U2 T2 Py Py3’
Py = tw_us, Pz =tow_us,
(173)
Mt = L Uy ,,wWo g Pi3tay,witoPoy = 2t
2 ~ uPi3Pay AT+t 18 4IYNJF2247P13PQ4’
P13 = uw_uz, Pay = tswiuyg.
In such a way we have
1 252t 1 2u?t
M++++ = 2 (1% (1% - tb tb
t( )31(t")a2 Roilion u( )a1(t”)s2 Riafor’
1 2u?
MY = Z (%) (t* 174
t( )31( )42P14P23’ (174)
1 22
M+ = —Z(b) 41 ()5 .
~()a(?) ey
We use the relation
|Rua|* = Spprpopapaws = —st, |Raz|* = —st, |Rus|* = [Raa|? = —su,

|Pl4|2 = |P23|2 = —u, |P13|2 = |]324|2 = —t, (175)
Ri4Ra3[Ri3Ra4]* = —s*tu.

For the color structures, we use

() ()2 () (P )sa]” = (Tr1)? = Tha = (N? = 1),

(176)
a a b b * aybiagh _l _ L 2
(t )31(t )42[(t )41(t )32] = Trtt"t"t” = 2CF, CF = 2N(N ].)
As a result, we have
2 2 2 82
MRN8 177
e A =t B a77)
+—+—2 2 u? +——+2 1 ¢

MY = (N -y, MY P = (N - (T8)
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And for the total sum (3 [MA1A2Asra|2 = 25 |\ +A2As02) e have

2 2 2 2 2
9 - 9 s s 2s U t
D IMIZ, g = 2(N? = 1) [t—Q ts - Nm T E ?} (179)
For differential cross section, we have (N = 3)
do 1999 :oz_i 52 +u? 52+t2_gi . (180)
dOs 9s t2 u? 3tu

H.3. Scattering of Quarks of Different Flavors. Only one Feynman diagram

(scattering channel type) contributes
(181)

1
M = (f,a)gl (ta)42 Zﬁg’yuulﬂéyyuu}

Two relevant chiral amplitudes are
fdt _ pay. (gay L 287t
M = (t*)31(t*) a2~ ;
t R14Ro3
(182)

1 2u?
M+ = ()31 (£%) g~ — .
(%) )4275 Py Po3

We have for the summed matrix element squared
2 N2 -1 2 2
> = ( 22(8 ), (183)

and for the cross section
d 2(N2 _ 1) 52 2
o _ ol i i (184)

dO4 T T 8N2s 12

H.4. Process gq¢ — qg. Matrix elements have the form
M = (t%)31(t")2a My — (t°)21(t")34 Mo, (185)

with
1_ _
M, = 7 U8 Ynt1027u04,
(186)

1_ _
My = S U27AUL U3 YAV
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For chiral amplitudes, we have

1 252
M — Q1 By, D1 oy Bats, —
1 tN1aNas PP3YuP1P2VuP4W+ tN1oNa3’
Nig = hiw_va, Ny3 = Dywius,
+——+ 2t = =
M, = ———, Niz=1uw_u3, Ny = awyvo,
SN13N42
) (187)
1 —2t°u
M=t = —— SppsyupiPsp paPowy = ———
1 tK12K 13 P P3YuP1P3P2Y uP4P2W+ tK19Kas'
M+_+_—7_2UQS Kz = u1psw_v Ky3 = typowiu
2 = 5K13K42’ 12 = U1Pp3w—-v2, 43 = U4Pa2wW U3,

K3 = tapowyus, Kiz = U4prwyvs.
Keeping in mind the relations

INi2|? = [Nuys|? =5, |Ni3|> = |Npo|? = —t, |Ki12* = |Ku3|* = tu,

(188)
|K13? = |Kyo|® = —us, KioKu3[K13Kao]* = —u’ts,
and taking into account the color factors, we obtain
2 2 9,2
M+ 2= (N2_1) | ¥ L ¥ _ 2w
| | ( ) 2 + s2  Nts|’
(189)

52 __ t
|]\4’++++|2:(]\[2_1)2‘:_27 |M+ +|2: (N2_1)S_2
The differential cross section is (the averaging on the color states of initial quarks
factor 1/N? is included)

do  (N? -1)a? [tQ +u? N s24+u?  2u? (190)

dOs - SN2 52 2 Nts|’

H.5. Subprocess ¢7 — ¢’q’. Only annihilation channel Feynman diagram is
relevant. We have for the summed matrix element square

u? + t?
2

D IMPP=2(N?—1) (191)

s
and for the cross section (averaging color factor 1/N? is included), N = 3

do _aﬁuQ—l—tQ
dOs 9s 2

(192)
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H.6. Process q¢ — gg. Matrix element of the process

q(q1) + a(g2) — 9(gz,€* a) + g(qu, €’, b) (193)

is described by three Feynman diagrams. It has the form M = v30u; with

1 1
0= t”t“;é”(q1 —G3)é + t“tbaé“(q] — Ga)é’—

- g(t“tb 19— 69 (gse?) + e(qae®) + ds(ce?)].  (194)

One can be convinced that the gauge condition is fulfilled. Namely, with replace-
ment e — q3, the expression for matrix element turns to zero. We obtain

N Ay 2 + u? 2 4 2
Z|M|2 = Spp20p10*+ =8NCr [NQ — 1208

}. (195)

For the differential cross section, we obtain (averaging color factor 1/N? is
included, but identity factor 1/2! for the final 2-gluon state is not included)

d 242 4 o2 t
o 8ajt’+u [1 gu] (196)

dOs ~— 27s  tu 42
H.7. Process qg — qg. Matrix element of process g(p1) + q(p2) — g(ps3) +
q(p4) has the form M = u40us with
1 34145 (o Y 1 135 (05 Ha ) é
0= ;t t é3(ps + pa)ér + Et t°é1(p2 — p3)és—
2 1.3 3,1\~ 5 .
- ;(t 3 — t3tY) [—ps(eres) + é1(espr) + és(erps)].  (197)

For the summed on the spin and color states of matrix element square, we obtain

24,2 2
98+ u [1_(2N su ] (198)

2 __
> [M|? = —8NC} N

For the differential cross section (color averaging factor is 1/(N(N? — 1)), we
obtain (N = 3)

do _a?sQ—l—uQ 1 9 su
dOs ~ 27s tu

H.8. QCD Process gg — gg. Matrix element of process

g(p1,ed) + g(p2, €5) — g(ps, es) + g(pa, €3) (200)
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has the form
M = [I(abed)T + J(abed) K + L(abed) Q)€ €5,€55€4,, (201)
with color structures
I(abed) = fe*fe%,  J(abed) = fof%,  L(abed) = %, (202)

Lorentz structures
11
T;w)\/) = Gux9vp — GupGvx — Vyunvp/\n’
22
K;w)\p = Gup9vr — GuvGp + — V HUVVI)VI’ (203)

31
Q;w)\p = Guv9rp — GurGvp — ‘//);M]Vy)\na
and
Vll _
uvn PinGuv + P2u9vn — Pivdnu,

1
V/)An = §(p3 = Pa)ndpxr — P3pGxn + Pargnp,
V/\un = —DPingxp T P1xGun + P3pdnir;

(204)

1
VV2p27] = 5(]92 +p4)ﬁgl/p — P2p9nv — PavGpn;

Vp3uln = —DP1nGpu + P1p9un + PapInp;

1
Vu/\n = 5(}72 + P3)ngur — P22agny — P3vGan-

One can be convinced in fulfillment of gauge condition: when replacing e;(p1)
by pi, matrix element turns to zero. We must use Lorentz conditions (e;p;) =
0,7 = 2,3,4 and Jacobi identity I + J + L = 0. Matrix element obeys the Bose
symmetry: it is invariant over the simultaneous replacement of four momenta,
Lorentz indices and color indices of any two gluons. Using the completeness
equations Zeweb* = —g,, 0% an

Z I*(abed) = Z J?*(abed) = Z L?(abed) = N*(N? — 1),
abed abed abed
(205)

1
> I(abed) Japea = _§N2(N2 —1),
abed

after some algebra, one obtains

> IMJ? = 16N*(N? - 1) {3 ————— = 1. (206)
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For differential cross section, we obtain (color averaging factor is 1/(N? — 1)?)

do 92 1
W6 = e G+ I+ 4, (207)

where we use the alternative form of the factor in the square brackets of the
previous formula [19]. In conclusion we note that the expressions for all the
processes considered above are in agreement with ones given in the Particle Data
Group compilation [29].

H.9. Using of Color Basis. Projectors. 1) For scattering of quarks of
different flavors, matrix element can be written as

My = uzyyurtgy,ug, (208)
with (£%)j,5, = X§2+(ta)j2jlxil, X’ describes color state of quark. The system

of two quarks has two basis color projectors 3 x 3 = 3 + 6 antisymmetric and
symmetric ones

P’i?;i1§j2j1 = N?’[(Siliz(sjljz - 5i1j25i2j1]a
PP inis = N6l[0i1iy 05,50 — 0i1jaGinji ], (209)
1 1
N3 = i ———— ) Nﬁ =
ON(N _ 1) ON(N + 1)

Schematically their properties can be written as
J E  _ pj
P, wPyy =Py 0k (210)
Performing the convolutions, we obtain

(R P?) = —N3NCp: (R,P%) = N¢NCp,

- . (211)
Pi]1i27j1j2 = ijlj27i1iz’
and
, NZ-1
Ry = NCp[-N3P; + NgPs], > |Ri|* = — (212)
color
using as well
2 2 2
1 s“tu
Z —My| =8—5—. (213)
spins
For the differential cross section, we obtain
do?192—9192 2 N2 -1 2 2
7 _ ol ) +u 214)

dOs n 8N2s t2
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2) For the matrix element of scattering of different quark and antiquark, we
have the form

- - 1
MBE2—9d — ;MtZt, Zt — (ta)j1j2 (ta)iﬂ“ (215)

Using the projection operators P(0), P(8)

1 2 . .
PO = ﬁ‘siljléizjz’ PB) = N? = 1(t )Jﬂd(t )izjz (216)
and the relevant convolutions
p(0)y — Py — ___CF
(2P0) = Cp, (ZP®) = ————.,

we obtain

cr
Z =cpP® — pO®
VNZ -1

N2 -1
) 217)
2 _ L2
S 121 = (N - 1),
color
The differential cross section is
do142—q142 B ag(NQ _ 1) 52 + u2. 218)

dOs n 8N2s t2

3) For scattering of quarks of the same flavor, matrix element can be writ-
ten as

1 1
MDD = MRy — —MyRu, By = ()51, ()i, (219)
using the previous results, and
(R, P?) = NsNCp, (R,P%) = NgNCp. (220)

Matrix element has the form

M, M, 3 M, M,
M = NCp [— <Tt + 7) N3 P? + <Tt - 7) NGPG] . (221)

Using Y. M;M; = —8s2, we obtain

spins

2 2242 9g2
s% +u?s? + s] (222)

M|? = 16N -
Z| | 0 CF[ t2 u? Ntu
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and the cross section cited above. The similar calculation can be done for the
case of scattering of quark and antiquark of the same flavor.

4) Consider at least the process of annihilation of quark and antiquark to two
gluons. Matrix element (three Feynman amplitudes contribute) has the form
_ A 1.
M = vy R2¥64(ql —{3)és + Ry 563((]1 — (a)és—
2 . . .
- ;(R1 — R2)[—(g3e4)é3 + (qae3)éa + (e3ea)ds] |ua,

(223)
with Ry = (t°t%),,,,, Ra = (t**),.,,,. We use the color basis
1
c1 = Nléabérlrgle = m,
1
¢o = NoD(t), 1, No = , 224
2 m PO e e ey, Y
- raoc C 1
c3 = Nai f*(t) 7y, N3 =

VN(NZ =1)/2’

which satisfies the normalization condition (¢;¢;) = 1,4 = 1,2, 3. The convolution
necessary to us is

(Ri¢1) = (Ro¢1) = NiINCF, (Rié2) = (R2¢) = No (N2 —4)(N?-1)

N )

) (225)
- - N(N- -1

(Rlcg) = —(RgCg) = Ng%.

So we have

R N2 -1 n N2 -4 +N
1 AN C1 5 C2 \/503 )
(226)
Ry — N2 -1 n N2 -4 N
2 AN C1 5 Co \/_63 .
As a check, we use
1
(Ri1R) = Trt*t*°t* = NC%, (RiRJ) = Trt*t"t"t® = —5Cr. (227)

Both relations are fulfilled. Matrix element can be written as

N2 -4 [ N2
01 <Cl + 5 CQ) + 09 763] U, (228)

N2 -1
M =
4N

()
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with

1

(229)

. P\ a 4 . . .
Oy = —;64((11 —3)és + —é3(qr — Ga)és — ;[—(Q364)63+((J463)64+(6364)Q3]~

u

Using the relations

1 12 + u?

~Sp §2014:0{ =2

1 Pa2U1q1U4 P

1 2 +u? 2 + u?
2 8p G202G:0F =2 —4

1 P 2U2q1U, o 52 )

we obtain for the summed on color and spin states matrix element square:

|

_ NZ_1)2 1 2N?
oo =282 gy [ L

Cross section is (for N = 3 it is in agreement with [29])

dott0 8?19
dOs  27Ts [ tu 4s?

H.10. Color Projectors for gg — gg. For the process

g(pav Ta) + g(pba rb) - g(plv 7“1) + g(an T2)7
we use the color basis [30]

R i =1,2,3,4,5,

1,Tp,72)

obeying the conditions

RTa,ﬂ"l R7"cv7"3 _5"RTG7T1
1,Te,T37 ), TyT2 LI Ty,

Explicit form of them is

1 N

Ta,T1 Ta,T1

1,ry,m2 N2 — 157’a7“167“b7“2a 2,7p,m2 N2 — 4d7’a7"16d7"w’20a
1

TasT1

3,rp,m2 N fT’aT’wabrzcv

[tu (N2 —1)s?

(230)

(231)

(232)

(233)

(234)

(235)

(236)

1 1
RZ%:;Q = 5[57’0.7’1157’17"2 - 67"(17’257’117’1] - Nfrachtmrzm
1 1 N
g,ari:,lrz = 5[5T’a7’b57’17“2 + 67“(;7’257’117’1] - N2 _ 157’a7"157’b7"2 - N2 N 4drarlcdrbr207
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with fape, dape — structure constants. We need as well K; = Rffb They are
Ki=1,Ky=K3=N?-1,K;=(N?-1)(N?-4)/2, Ks = (N? —1)(N? —
2)/2 — 1. For the case N = 3, we have K; = 1,8,8,20,27;i =1,2,3,4,5. We
remind here the expansion of the product 828 =1+ 8 + 8 + (10 + 10) + 27 to
the irreducible representation of color SU(3) group [31].

Performing the conversion of color matrix element given above with the color

projectors, we obtain for the matrix element squared Y |M|> = 256 H,

H = Hy1 + 8Hag + 8H33 + 20Hyy + 27Hs5 =
27 9 (su st tu
22

where we use [30]

Hyy = ZHH’ Hyy =0, Hzs= §H11, (238)

219 [su ut st } 9 {u2 52 2 ]

33_a_1_6t_2 452 4u2 32 [ st | tu 2su

The same result can be obtained in terms of matrix element given above M =
IT + JK + LQ. Using the relations [31]
N
dpiq fajr frip = =5 dijk

N% -4

Wfijka (239)

dpiqgjr frip =
Trigfajr Frip = _%fijkv
we obtain
M = (T - Q)[a1R1 + aaR2 + asRs5] + (asT + b3Q + ¢3K)R3,

1 1
a1 =N, as= 5N(N2 —1), a3=as by= —§N(N2 +1),  (240)
as = —Ng, C3 = N.

Note that the structure R4 drops out. The further squaring of the matrix element
leads to the expression for the differential cross section given above.
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