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In the context of mathematical hydrodynamics, we consider the group theory structure
which underlies the so-called ABC-flows introduced by Beltrami, Arnold and Childress.
Main reference points are Arnold’s theorem stating that, for flows taking place on compact
three manifolds M3, the only velocity fields able to produce chaotic streamlines are
those satisfying the Beltrami equation and the modern topological conception of contact
structures, each of which admits a representative contact one-form also satisfying the
Beltrami equation. We advocate that the Beltrami equation is nothing else but the eigenstate
equation for the first order Laplace—Beltrami operator x,d, which can be solved by using
time-honored harmonic analysis. Taking for M3 a torus T° constructed as R®/A, where
A is a crystallographic lattice, we present a general algorithm to construct solutions of the
Beltrami equation which utilizes as main ingredient the orbits under the action of the point
group ‘Pa of three-vectors in the momentum lattice *A. Inspired by the crystallographic
construction of space groups, we introduce the new notion of a Universal Classifying
Group i which contains all space groups as proper subgroups. We show that the
*4d eigenfunctions are naturally arranged into irreducible representations of &4, and by
means of a systematic use of the branching rules with respect to various possible subgroups
H; C &4, we search and find the Beltrami fields with nontrivial hidden symmetries. In
the case of the cubic lattice, the point group is the proper octahedral group O24, and the
Universal Classifying Group &cupic is a finite group Gisse of order |Gisss| = 1536
which we study in full detail deriving all of its 37 irreducible representations and the
associated character table. We show that the O24 orbits in the cubic lattice are arranged
into 48 equivalence classes, the parameters of the corresponding Beltrami vector fields
filling all the 37 irreducible representations of Gis3¢. In this way we obtain an exhaustive
classification of all generalized ABC-flows and of their hidden symmetries. We make
several conceptual comments about the need of a field theory yielding the Beltrami equation
as a field equation and/or an instanton equation and on the possible relation of Arnold—
Beltrami flows with (supersymmetric) Chern—Simons gauge theories. We also suggest

*Prof. Fré is presently fulfilling the duties of Scientific Counselor of the Italian Embassy in the
Russian Federation. E-mail: pietro.fre@esteri.it, pietro.fre@esteri.it
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linear generalizations of the Beltrami equation to higher odd dimensions that are different
from the nonlinear one proposed by Arnold and possibly make contact with M-theory and
the geometry of flux compactifications.

B KoHTEeKCTe M TeM THYECKOH TMAPOAWH MHUKH MBI P CCM TPHB €M TE€OPETHKO-TPYII-
HIOBYIO CTPYKTYpY, JIEX LIyI0 B OCHOBE T K H 3bIB eMblx ABC-1oTokoB, BBeileHHbIX beilp-
Tp Mu, ApHomnbaoM u Y itmgpeccom. I BHBIE OpHEHTHPBI — TeOpeM APpHOIB] , YTBEp-
X I0II I, YTO JJIS MOTOKOB H KOMII KTHBIX TPEXMEPHBIX MHOroobp 3usx M3z TOIBKO
TOJISl CKOPOCTEl, KOTOphIe YAOBIETBOPSIOT Yp BHEHHIO BenbTp MU, CIIOCOOHBI TPOM3BECTH
X OTHYECKHE TP €KTOPHH, U COBPEMEHH S TOIOJIOTHYECK S KOHLEMIHS KOHT KTHBIX CTPYK-
TYp, K X 4 U3 KOTOPBIX X P KTEpU3YyeTCs KOHT KTHOI OIHO(OPMOM, T KXe yIOBIeTBOPS-
oleil yp BHeHuto BenbTp Mu. Mbl  pryMeHTHpyeM, uTO yp BHeHUe benbTp MU sBigercd
HEe YeM HHBIM, K K yp BHEHHEM H COOCTBeHHbIe (DYHKLIUH ONEp TOp MEPBOTO MOPSAK
JI nmn ¢ —Benbrp MH *4d, ¥ MOXeT OBITH PEIISHO MpU IOMOLIM IPOBEPEHHOIO BpeMeHeM
I PMOHHYECKOTO H JIM3 . P ccM TpHB s B K decTBe MHOT006p 3us M3 top T, moctpo-
ennplii K K R*/A, rme A — Kpuct jutorp uueck s peleTk , Mbl IPECT BlseM OOl

JITOPUTM HOCTPOEHUS PelleHuil yp BHeHus benbTp Mu, KoTopslii 6 3upyercss H opouT X
TOYEYHOH rpymnmbl P CHMMETPUM PELIeTKH INPH JSUCTBUH H TPH-BEKTOPHI WMILYJIECOB
Iy JIbHOM pemeTkn “A. BIOXHOBIEHHBIE CYIIECTBYIOIINM OCTPOCHHEM KPUCT JUIOTp (-
YECKHUX IMPOCTP HCTBEHHBIX IPYII, Mbl BBOJUM HOBOE IIOHSATUE YHUEEPC JIbHOU K CCUPUYU-
pyroweti epynnst GLlA, KOTOP 51 CONEPXKHUT BCE MPOCTP HCTBEHHbIE IPYIIIBI K K MOATPYIIIIHL.
MBbI IOK 3BIB €M, YTO COOCTBEHHBIE (DYHKIIUH ONEp TOp *¢d €CTECTBEHHBIM 00p 30M IpyII-
HNUPYIOTCS B HEIPUBOAUMBIC IPEACT BieHus rpynisl B, U, IOCPEICTBOM CUCTEM THYe-
CKOI'O MCHOJIb30B HM4 1P BUJI UX P 3JI0KEHUS OTHOCHUTENIBHO P 3JIMYHBIX BO3MOXHBIX IIOJI-
rpymn H; C B4, MBI nmiemM u H xoauM 1ot BenbTp MU ¢ HETPHBHU JBHBIMU CKDPBITBIMU
cuMMeTpusIMU. B cityd e KyOuueckoil pelieTky TOYe4H s IPYII CHUMMETPUH — IIP BHIIb-
H s OKT 37p JbH s rpyrn Og4, yHHBepC JIBH S KJI ccuuuupyiony st rpymn  Silcypic —
xoneud s rpynn Gisze mopsak  |Gisse| = 1536, KOTOpYIO MBI M3yd €M BO BCeX HET -
JIIX, CTPOs Bce ee 37 HeNpUBOJUMBIX IIPEACT BIECHUH M MX X P KTepbl. MBI IIOK 3bIB €M,
410 O24-0pOUTHI B KyOUUYECKOil pelieTke IpyHIHUpYyIOTcs B 48 KJI CCOB ®KBUB JIGHTHOCTH,

I P METPbl COOTBETCTBYIOLIMX BEKTOPHBIX IOl BelabTp MU 3 MONHAIOT Bee 37 HEIpHU-
BOJIMMBIX HpencT BieHuid rpynmbl Gisss. T KM 06p 30M, MBI ITOJy4d €M HUCYEPIIBIB IOLIYIO
K11 ccupuk LU0 Beex 0606uennbix ABC-nomokoe 1 UX CKPBITBIX CHMMETpHil. MBI fiern eM
HECKOJIBKO KOHIIETITY JIBHBIX 3 M€Y HHI OTHOCHUTEIBPHO HEOOXOAMUMOCTHU CO3H HHS MONIEBOH
TEOpHH, COlepXK Iiell yp BHeHHe BenbTp MM K K yp BHEHHUE IO M/WIM UHCT HTOHHOE
yp BHEHHUE, U O BO3MOXHOH CBi3M IOTOKOB ApHoubp] —benbtp Mu ¢ (cynepcummeTpuy-
HbIMH) K 1uOpoBouHbiMu TeopusiMu YepH —C iiMoHC . MBI T KXXe NpeT T eM JHHeiHoe
o6o6uieHre yp BHeHHs BenbTp MM H Cllyd i HEYETHOMEPHBIX MPOCTP HCTB Gojiee BBICO-
KHUX P 3MEpHOCTell, KOTOpOe OT/JIMY €Tcd OT HEeJIMHEHHOro, IIPeUI0KEHHOTO APHOJIBIOM, U,
BO3MOXHO, CBSI3 HO ¢ M-Teopueil u reomeTpueil KOMIT KTU(UK LU C MOTOK MH.

PACS: 12.60.Jv

1. INTRODUCTION

Classical hydrodynamics of ideal, incompressible, inviscid fluids, subject to
no external forces, is described by the Euler equation in the three-dimensional
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Euclidean space R?3, namely, by

0

&u—I—u-Vu:—Vp; V-u=0, (1.1)
where u = u (z, t) denotes the local velocity field, and p(x) denotes the local
pressure®. In vector notation, Eq. (1.1) reads as follows:

%ui—l—uj 0; u=—-0p; u =0 (1.2)
and admits some straightforward rewriting that, notwithstanding the kinder garten
arithmetic involved in its derivation, it is at the basis of several profound and mo-
mentous theoretical developments which have kept the community of dynamical
system theorists busy for already fifty years [1-13].

With the present paper, we aim at introducing into the classical field of
mathematical fluid-mechanics a new group-theoretical approach that allows for
a more systematic classification and algorithmic construction of the so-called
Beltrami flows, hopefully providing new insight into their properties.

1.1. Beltrami Flows and Arnold Theorem. Let us then begin with the
rewriting of Eq.(1.2) which is the starting point of the entire adventure. The
first step to be taken in our raising conceptual ladder is that of promoting the
fluid trajectories, defined as the solutions of the following first-order differential
system™*:

— 2t (t) = u'(2(t), 1), (1.4)

to smooth maps
SRy — M, (1.5)

from the time real line R; to a smooth Riemannian manifold M, endowed with
a metric g. The classical case corresponds to M = R3, 9ij (x) = di;, but any
other Riemannian three-manifold might be used and there exists generalization
also to higher dimensions. Adopting this point of view, the velocity field u (z, t)

*Note that we have put the density p = 1.

**In mathematical hydrodynamics people distinguish two notions, that of trajectories, which
are the solutions of the differential equations (1.4), and that of streamlines. Streamlines are the
instantaneous curves that at any time ¢ = to admit the velocity field u®(x,%o) as tangent vector.
Introducing a new parameter 7, streamlines at time to are the solutions of the differential system:

d . )

—z* (1) = u'(z(7), o). (1.3)
dr

In the case of steady flows, where the velocity field is independent of time, trajectories and streamlines

coincide. Since we are mainly concerned with steady flows, in the present paper we often use the

word streamlines and trajectories indifferently.
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is turned into a time evolving vector field on M, namely, into a smooth family
of sections of the tangent bundle 7' M:

VteR:u(z,t)0; =Ut) €T (TM, M). (1.6)

Next, using the Riemannian metric, which allows one to raise and lower tensor
indices to any U(t), we can associate a family of sections of the cotangent bundle
CT M defined by the following time evolving one-form:

VieR: Q1) = gy u'(z,t) di? € T (CTM, M). (1.7)

Utilizing the exterior differential and the contraction operator acting on differential
forms, we can evaluate the Lie-derivative of the one-form Q[V!(¢) along the vector
field U. Applying definitions (see, for instance, [14], chapter five, page 120 of
volume two), we obtain

LoQV() = iy - a0V 1 q (iU : Q[U]) -

= [ufOru’ +g™0 | U|? | gijda?, (1.8)
N——
Imn U™ u™

and the Euler equation can be rewritten in either one of the following two-
equivalent index-free reformulations:

1
—d(p—§|UP)—&Qm+£mﬂ% (1.9)

1
—d (p-l— 5 IV ||2> = 9,0 iy - dolYl. (1.10)

Equation (1.10) is one of the possible formulations of the classical Bernoulli
theorem. Indeed from Eq. (1.10) we immediately conclude that

1
H=p+5 U (1.11)

is constant along the trajectories defined by Eq.(1.4). Turning matters around,
we can say that in steady flows, where 9,U = 0, the fluid trajectories necessarily
lay on the level surfaces H(x) = h € R of the function

H:M—R (1.12)

defined by (1.11). Then, if H(x) has a nontrivial z-dependence, it defines
a natural foliation of the n-dimensional manifold M into a smooth family of
(n — 1)-manifolds (all diffeomorphic among themselves) corresponding to the



CLASSIFICATION OF ARNOLD-BELTRAMI FLOWS 915

level surfaces. Furthermore, as already advocated, the trajectories, i.e., the solu-
tions of Eq. (1.4), lay on these surfaces. In other words, the dynamical system en-
coded in Eq. (1.4) is effectively (n — 1)-dimensional admitting H as an additional
conserved Hamiltonian. In the classical case n = 3, this means that the differ-
ential system (1.4) is actually two-dimensional, namely, nonchaotic and in some
instances even integrable*. Consequently, we reach the conclusion that no chaotic
trajectories (or streamlines) can exist if H(x) has a nontrivial z-dependence: the
only window open for Lagrangian chaos occurs when H is a constant function.
Looking at Eq. (1.10), we realize that in steady flows, where 9;,Q!Y] = 0, the only
open window for chaotic trajectories is provided by velocity fields that satisfy the
condition

iy - dVl = 0. (1.13)
This weak condition (1.13) is certainly satisfied if the velocity field U satisfies
the strong condition

dQUT = X x, QY & «, 40V = x IVl (1.14)

where %, denotes the Hodge duality operator in the metric g:
*g QY = ¢, gék QEﬁU} dz™ A dz"™ = utdx™ A da™ €0mmns (1.15)
*g AV = epn g™ g™10, (ggru”) dzt. (1.16)

The heuristic argument, which leads to consider velocity fields that satisfy the
Beltrami condition (1.14) as the unique steady candidates compatible with chaotic
trajectories, was transformed by Arnold into a rigorous theorem [1,5] which,
under the strong hypothesis that (M, g) is a closed, compact Riemannian three-
manifold, states the following.

Theorem 1.1 (Arnold). There are only two possibilities:

a) Either the form Q! is an eigenstate of the Beltrami operator *gd with a
nonvanishing eigenvalue A # 0,

b) or the manifold M is subdivided into a finite collection of cells, each of
which admits a foliation diffeomorphic to T? x R and every two-torus T? is an
invariant set with respect to the action of the velocity field U: in other words, all
trajectories lay on some T? immersed in the manifold M.

Henceforth, the desire to investigate the on-set of chaotic trajectories in
steady flows of incompressible fluids motivated the interest of the dynamical
system community in the Beltrami vector fields defined by the condition (1.14).
Furthermore, in view of the above powerful theorem proved by Arnold, the

*Here we rely on a general result established by the theorem of Poincaré-Bendixson [15] on the
limiting orbits of planar differential systems whose corollary is generally accepted to establish that
two-dimensional continuous systems cannot be chaotic.
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focus of attention concentrated on the rather unphysical, yet mathematically very
interesting case of compact three-manifolds. Within this class, the most easily
treatable case is that of flat compact manifolds without boundary, so that the
most popular playground turned out to be the three-torus 7. Reporting literally
the words of Robert Ghrist in his very nice review [13]: on those occasions
when compactness is desired and the complexities of boundary conditions are
not, the fluid domain is usually taken to be an Euclidean T? torus given by
quotienting out Euclidean space R> by the action of three mutually orthogonal
translations. These slightly ironical words are meant to emphasize the main
point which is outspokenly put forward by the same author few lines below:
Since so little is known about the rigorous behavior of fluid flows, any methods
which can be brought to bear to prove theorems about their behavior are of
interest and potential use. Certainly, most physical contexts for fluid dynamics
do not correspond to the idealized situation of a motion in a compact manifold
or, said differently, periodic boundary conditions are not the most appropriate
to be applied either in a river, or in the atmosphere, or in the charged plasmas
environing a compact star, yet the message conveyed by the Arnold theorem that
the Beltrami vector fields play a distinguished role in chaotic behavior is to be
taken seriously into account and gives an important hint. Moreover, although
boundary terms usually encode relevant physical phenomena, yet the history of
periodic boundary conditions is a very rich and noble one in Quantum Mechanics,
Classical Field Theory and also in Quantum Field Theory. It suffices to recall
that periodic boundary conditions of quantized fields provide a formulation of
finite temperature quantum field theory.

In our opinion, such arguments are a sufficient justification for the fifty year
long efforts devoted by dozens of authors to the study of steady flows generated
by the Beltrami vector fields. On the other hand, what is somewhat surprising
is that an overwhelming part of such efforts is focused on a single example
constructed on the 72 torus. The following vector field

Ccos (2my) + Asin (27z)
u(z,y,z) = VAN (2 y 2) = | Acos(2r2) + Bsin (2rz) |,  (1.17)
Bcos (2mz) 4+ C'sin (271y)

which satisfies the Beltrami condition with eigenvalue A = 1 and which contains
three real parameters A, B, C, defines what is known in the literature by the name
of an ABC-flow (Arnold—Beltrami—Childress) [1,2, 16], and during the last half
century it was the target of fantastically numerous investigations.

The main aim of our work was to understand the principles underlying the
construction of the ABC-flows, use systematically such principles to construct
and classify all other Arnold-like Beltrami flows, deriving also, as a bonus, their
hidden discrete symmetries.
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The issue of symmetries happens to be quite relevant at least in two respects.
On the one hand, in the case of the ABC model, it occurs that the choice of para-
meters (A : B : C = 1), which leads to the Beltrami vector field with the largest
group of automorphisms, leads also to the most extended distribution of chaotic
trajectories. On the other hand, symmetries of the Beltrami flows have proved to
be crucial in connection with their use in modeling magneto-hydrodynamic fast
dynamos [10,11,17]. By these words it is understood the mechanism that in a
steady flow of charged particles generates a large scale magnetic field whose mag-
nitude might be exponentially increasing with time. No analytic results do exist
on fast dynamos, and all studies have been so far numerical, yet, while dealing
with these latter, crucial simplifications occur and optimization algorithms become
available if the steady flow possesses a large enough group G of symmetries. In
this case the magnetic field can be developed into irreducible representations of
G and this facilitates the numerical determination of growing rates of different
modes. It is important to stress that the linearized dynamo equations for the
magnetic field B coincide with the linearized equations for perturbations around
a steady flow. Therefore the same development of perturbations into irreps of G
is of great relevance also for the study of fluid instabilities. In plasma physics,
the Beltrami flows are known under the name of Force-Free Magnetic Fields [9].

1.2. The Conception of Contact Structures. Last but not least, let us men-
tion that the Beltrami vector fields are intimately related with the mathematical
conception of contact topology. This latter, vigorously developed in the last two
decades starting from classical results of analysis that date back to Darboux, Gour-
sat and other XIX century maitres, is a mathematical theory aiming at providing
an intrinsic geometrical-topological characterization of nonintegrability, namely
of the issues discussed above. As we have seen from our sketch of the Arnold
theorem, the main obstacle to the onset of chaotic trajectories has a distinctive
geometrical flavor: trajectories are necessarily ordered and nonchaotic if the man-
ifold, where they take place, has a foliated structure 35, X R;,, the two-dimensional
level sets X being invariant under the action of the velocity vector field U. In
this case each streamline lays on some surface ;. Equally adverse to chaotic
trajectories is the case of gradient flows, where there is a foliation provided by
the level sets of some function H(z) and the velocity field U = VH is just
the gradient of H. In this case all trajectories are orthogonal to the leaves 3,
of the foliation and their well-aligned tangent vectors are parallel to its normal
vector.

In conclusion, in presence of a foliation we have the following decomposition
of the tangent space to the manifold M at any point p € M:

T,M=T)S, & TSy, (1.18)

and no chaotic trajectories are possible in the region & C M, where U(p) €
T, or U(p) € T;-%), for Vp € & (see Fig. ).
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Fig. 1. Schematic view of the foliation of a three-dimensional manifold M. The family
of two-dimensional surfaces X, are typically the level sets H(x) = h of some function
H : M — R. At each point of p € ¥, C M, the dashed vectors span the tangent
space T,“Eh, while the solid vectors span the normal space to the surface T;‘ 3. Equally
adverse to chaotic trajectories is the case where the velocity field U lies in T;‘ >, (gradient

flow) or in T,“Eh

This matter of fact motivates an attempt to capture the geometry of the
bundle of subspaces orthogonal to the lines of flow by introducing an intrinsic
topological indicator that distinguishes necessarily nonchaotic flows from possibly
chaotic ones. Let us first consider the extreme case of a gradient flow, where
QIUl = dH is an exact form. For such flows we have

QU A dQVl = QU A ddH = 0. (1.19)
=0

Secondly, let us consider the opposite case, where the velocity field U is orthogo-
nal to a gradient vector field V H so that the integral curves of U lay on the level
surfaces X;,. Furthermore, let us assume that U is selfsimilar on neighboring level
surfaces. We can characterize this situation in a Riemannian manifold (M, g) by
the following two conditions:

vV & ¢g(U, VH)=0; [U, VH]=0. (1.20)

The first of Egs.(1.20) is obvious. To grasp the second, it is sufficient to in-
troduce, in the neighborhood of any point p € M, a local coordinate system
composed by (h,z!l), where h is the value of the function H and z! denotes
some local coordinate system on the level set X;,. The situation we have de-
scribed corresponds to assuming that

U~Ul@lho; o,Ul!) =o0. (1.21)
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Under the conditions spelled out in Eq. (1.20) we can easily prove that
ivy dQV = 0. (1.22)

Indeed, from the definition of the Lie derivative, we obtain

vy dOY = Loxg QY —d|iggQV]. (1.23)
—— N—_——
= QllU. VH] =g =0

Since we have both iy g QY = 0 and [U, VH] = 0, it follows that also in this
case
QU A a0V = . (1.24)

Indeed, the three-form QY] A dQIY! has no projection in the direction VH and
therefore it lives on the two-dimensional surfaces ¥,: but in two dimensions, any
three-form necessarily vanishes. This heuristic arguments motivate the notion of
contact form and contact structure that capture the nonintegrability of a vector
field in a fopological, metric independent way.

Definition 1.1. Let M be a smooth three-manifold. A contact form
a €T (CTM, M) is a one-form such that

o A da # 0. (1.25)

Definition 1.2. Let M be a smooth three-manifold and o be a contact form on
it. The rank-two vector-bundle of all vector fields X, which satisfy the condition

ixa=0, (1.26)
is named the contact structure CS,, defined by «.

In view of what we discussed above, it is clear that the definition of contact
structures captures the notion of maximal nonintegrability. At each point p € M,
the contact structure is a two-dimensional plane singled out in the tangent space
T, M by the condition (1.26). This smooth family of planes, however, cannot
be considered as the tangent plane of the level surfaces of any foliation. This is
ruled out by the condition (1.25).

Let us next introduce the notion of Reeb-like field

Definition 1.3 (Reeb-like field). Let M be a smooth three-manifold and « be a
contact one-form defining a contact-structure. A Reeb-like field for o is a vector
field U satisfying the following two conditions:

iva > 0; igda=0. (1.27)
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Fig. 2. A schematic picture of a contact structure. Given the Reeb field U, associated with
a contact one-form «, we can consider the family of hyperplanes orthogonal, at each point
of the manifold, to the vector field U. These hyperplanes are defined as the kernel of the
contact form o and constitute the contact structure

Let us stress that this definition makes sense only in view of Eq. (1.25); this latter
imposes that do has support on the orthogonal complement W+ C T M of the
one-dimensional sub-bundle Wl ¢ T M forming the support of o.. The second
of Egs. (1.27) imposes that the Reeb-like vector field should have no component
along W+: (see Fig.2).

As we see, the main reason to introduce the contact form conception is that
so doing one liberates the notion of a vector field capable to generate chaotic
trajectories from the use of any metric structure. A vector field U is potentially
interesting for chaotic regimes if it is a Reeb-like field for at least one contact form
«. In this way the mathematical theorems about the classification of contact struc-
tures modulo diffeomorphisms (theorems that are metric-free and of topological
nature) provide new global methods to capture the topology of hydro-flows.

Instead, if we work in a Riemannian manifold endowed with a metric (M, g),
we can always invert the procedure and define the contact form « that can admit
U as a Reeb-like field by identifying

a =0, (1.28)

In this way, the first of the two conditions (1.27) is automatically satisfied:
ipQUl =|| U ||2> 0. It remains to be seen whether QY is indeed a contact
form, namely, whether QI A dQV! £ 0, and whether the second condition
iy dQV) = 0 is also satisfied. Both conditions are automatically fulfilled if U is
the Beltrami field, namely, if it is an eigenstate of the operator x4, d as advocated
in Eq. (1.14). Indeed, the implication iy dQ!Y! = 0 of the Beltrami equation was
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shown in Eq. (1.13), while from the Beltrami condition it also follows:

QU A a0V = VT A+, VT = || U ||? Vol # 0,
(1.29)

1 _ .
Vol = 30 X €k dx’ A da? A dz®.

In this way the conceptual circle closes and we see that all the Beltrami vector
fields can be regarded as the Reeb-like fields for a bona-fide contact form. Since
the same contact structure (in the topological sense) can be described by different
contact forms, once the Beltrami fields have been classified it remains the task to
discover how many inequivalent contact structures they actually describe. Yet it is
reasonable to assume that every contact structure has a contact form representative
that is derived from the Beltrami Reeb-like field. Indeed, a precise correspondence
is established by a theorem proved in [12,13]:

Theorem 1.2. Any rotational Beltrami vector field on a Riemannian 3-manifold
is a Reeb-like field for some contact form. Conversely, any Reeb-like field asso-
ciated to a contact form on a 3-manifold is a rotational Beltrami field for some
Riemannian metric. A rotational Beltrami field means an eigenfunction of the *4d
operator corresponding to a nonvanishing eigenvalue \.

1.3. Beltrami Equation at Large and Harmonic Analysis. All the arguments
presented in the previous sections have been instrumental to enlighten the role
of the Beltrami vector fields from various viewpoints related with hydrodynamics
and other mathematical-physical issues. Let us now consider from a more general
point of view the Beltrami equation (1.14) which constitutes the main topic of the
present paper. The one here at stake is the case p = 1 of an eigenvalue equation
that can be written in any (2 p + 1)-dimensional Riemannian manifold (M,, g),
namely*:

*gdw® = A w(P) (1.30)

The eigenfunctions of the x4d operator are 1-forms for p = 1, namely in three
dimensions, but they are higher differential forms in higher odd dimensions.
A particularly interesting case is that of 7-manifolds, where the eigenfunctions of
*¢d are three-forms and can be related with a Ga-structure of the manifold. An
important general observation is that the relation encoded in theorem 1.2 between
Eq.(1.30) and contact structures, as they are defined in current mathematical
literature, is true only for p = 1 and it is lost for higher p. Indeed, contact

*Note that, since xgd g d = (—)? A where A is the Laplacian, negative definite on compact
manifolds, then the eigenvalue X is real only for p = 2v 4 1 odd. For p = 2v even, the Beltrami
fields are instead complex. This is the analogue of the well-known properties of instantons in even
dimensions and supports the view that the Beltrami fields are the odd-dimensional counterpart of
instantons.
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structures are always defined in terms of a contact one-form and Eq.(1.25) is
replaced by

a ANda Ada...da#0. (1.31)
—_—

p—times

Hence, the problem of determining the spectrum and the eigenfunctions of the
operator *gdw(p) is a general one and can be addressed in the same way to
all odd-dimensions, yet its relation with flows and contact-structures is peculiar
to d = 3 and has not a general significance. Whether the contact-structure
viewpoint or the pure geometrical view point encoded in Eq.(1.30) is more
fundamental is certainly a matter of debate and bears also on personal scientific
tastes, yet it is absolutely clear that once the correspondence of theorem 1.2 has
been established, the classification of the Beltrami fields is reduced to a classical
problem of differential geometry whose solution can be derived within a time
honored framework which makes no reference to trajectories, dynamical systems,
contact structures and all the rest of the conceptions debated in the previous
subsections of this introduction.

The framework we refer to is that of harmonic analysis on compact Rie-
mannian manifolds (M, g) and its application to the spectral analysis of the
Laplace—Beltrami operators (for reviews, see the book [18] and the articles [19]).
As thoroughly discussed in the quoted references there are, on a Riemann man-
ifold (M, g), several invariant differential operators, generically named Laplace—
Beltrami some of which are of the second order, some other of the first order.
They act on the sections of vector bundles £ — M of different rank, for in-
stance, the tangent bundle, the bundle of p-forms, the bundle of symmetric two
tensors, the spinor bundle, etc. Among the first-order operators, the most impor-
tant ones are the Dirac operator acting on sections of the spinor bundle and the
*gd-operator acting on p-forms in a (2p + 1)-dimensional manifold. The spec-
trum of all Laplace—Beltrami operators is sensitive both to the topology and to the
metric of the underlying manifold. Each eigenspace is organized into irreducible
representations of the isometry group G of the metric g, and the eigenfunctions
assigned to a particular representation are generically named harmonics.

Here comes an important distinction in relation with the nature of the group
G. If G is a Lie group and if the manifold M is homogeneous under its action,
then M ~ G/H, where H C G is the stability subgroup of some reference point
po € M. In this case harmonic analysis reduces completely to group-theory and
the spectrum of any Laplace—Beltrami operator can be derived in pure algebraic
terms without ever using any differential operations. In this case G is not a Lie
group and/or M is not homogeneous under its action, then matters become more
complicated and ad hoc techniques have to be utilized case by case to analyze the
spectrum of invariant operators.
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1.4. Harmonic Analysis on the 7° Torus and the Universal Classifying
Group. The reasons to compactify Arnold-Beltrami flows on the 7" have already
been discussed, and we do not resume the issue. We just observe that R3 is a
noncompact coset manifold so that harmonic analysis over R? is a complicated
matter of functional analysis. After compactification, namely, after imposing
periodic boundary conditions, things drastically simplify. Firstly, as we explain
in a detailed way in Sec. 2, the compactification is obtained by quotienting R>
with respect to a discrete subgroup of the translation group which constitutes a
lattice:

RS
=5
Secondly, we implement the programme of harmonic analysis by presenting a
general algorithm to construct solutions of the the Beltrami equation which utilizes
as main ingredient the orbits under the action of the point group 5 of three
vectors in the momentum lattice *A which is just the dual of the lattice A. In
the language of crystallography the point group is just the discrete subgroup
PBa C SO(3) of the rotation group which maps the lattice A and its dual *A into
themselves:

T3 (1.32)

PaA=A; Pp*A="A. (1.33)

In the case of the cubic lattice, that is the main example studied in this paper,
we have Geypic = O24, where Ogq ~ Sy is the proper octahedral group of order
|O24] = 24. In the case of the hexagonal lattice, which we also briefly analyze,
the point group is the dihedral group Dg of order |Dg| = 12.

Thirdly, as we explain in detail in Sec.5, which constitutes the hard-core of
the present paper, a general argument, inspired by the logic that crystallographers
use to derive and classify space groups, leads us to introduce a large finite
group &y, named by us the Universal Classifying Group for the Lattice A,
made out of discretized rotations and translations that are defined by the structure
of A. All eigenfunctions of the xgd-operator can be organized into a finite
number of classes, and each class decomposes in a specific unique way into the
irreducible representations of ®4ly. Hence, all Arnold-Beltrami vector fields
are in correspondence with the irreps of &i,. Knowing the branching rules of
such irreps with respect to its various subgroups H; C &4, and selecting the
identity representation, one obtains the Arnold-Beltrami vector fields invariant
with respect to those H; for which we were able to find an identity irrep D; in
the branching rules. In this way, we can classify all Arnold—Beltrami flows and
also uncover their hidden symmetries.

In this paper, we consider in an extensive way the case of the cubic lattice
and construct the corresponding Universal Classifying Group &Ucypic = Gis36-
This latter is a finite group of order |G1536| = 1536, which we study in full detail
deriving all of its 37 irreducible representations and the associated character
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table. We also analyze a large class of its subgroups H; C Gi536 systematically
constructing their irreps and character tables. This allows the derivation of all the
branching rules of the 37 Gis36 irreps with respect to the considered subgroups
which are displayed in dedicated tables in Appendices. We show that the Oy
orbits in the cubic lattice arrange into 48 equivalence classes, the parameters of the
corresponding Beltrami vector fields filling all the 37 irreducible representations
of Gis36. In this way, we obtain an exhaustive classification of all generalized
ABC-flows and of their hidden symmetries. In this way, we fulfill the task of
classifying and constructing all possible generalizations of the ABC-flows.

From our analysis emerges the following pattern. The Universal Classi-
fying Group contains at least two* isomorphic but not conjugate subgroups of
order 192, namely Gigo and GF192 in our nomenclature. The classical ABC-
flows are obtained from the lowest-lying momentum orbit of length 6 which
produces an irreducible 6-dimensional representation of the Universal Classi-
fying Group: Das[Gisss, 6]. The three-parameter ABC-flow is just the irre-
ducible 3-dimensional representation D13 [GF192, 3] in the split Da3 [G1536,6] =
D13 [GF192,3] ® D15 [GF192,3]. With respect to the isomorphic but not conju-
gate subgroup Giga, the representation Das [G1536, 6] remains instead irreducible:
Dos [Gis36,6] = Dag [Gige, 6], so that there is no proper way of reducing the
six parameters to three. The most symmetric case A : A : A = 1 simply cor-
responds to the identity representation of the subgroup GSoy C GFi92 which
occurs in the splitting of the 3-dimensional representation Dio [GF192,3] =
Dy [GSQ4, 1] @® Ds [GSQ4, 2].

All other Beltrami flows arising from different instances of the 48 classes
of momentum vectors have similar structures. The result of the construction
algorithm produces a representation of the Universal Classifying Group that can
be either reducible or irreducible. This latter can be split into irreps of either
G192 or GF192 and apparently all cases of the invariant Beltrami vector fields
have invariance groups that are subgroups of one of the two groups Gigs or
GF1g2. It would be interesting to transform this observation into a theorem. At
the moment we have not found an obvious proof.

A much shorter sketch of the Hexagonal Lattice is also discussed, to empha-
size the generality of our methods, but we do not address the construction of the

*It is known [20] that there are 4 different Space-Groups Fé 4, (I =1,...,4) of order 24,
isomorphic to the point group Ogz4 but not conjugate one to the other under the action of the
continuous translation group. One of them is the point group itself F% 4 = Oz24 which is a subgroup
of the first of the two groups of order 192 identified by us: Og24 C Gig2. Another of the four
mentioned groups is I'3, = GSa4 which is a subgroup of the second group of order 192 identified
by us: GS24 C GF192. It remains to see whether Fg4 and Fé‘4 are contained in the two already
identified subgroups Gig2 and GFjg2 or if there exist other two such nonconjugate subgroups of
order 192 that respectively contain F§4 and Fg 4- We do not know the answer to such a question.
Extensive but lengthy calculation can resolve the issue.
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Universal Classifying Group for this case, which might be performed along the
same lines.

1.5. Organization of the Paper. This very long paper is organized into three
parts: Introduction, Appendices, and References. Appendices that fill almost
100 pages are tables whose content is boring, yet it constitutes an essential and
indispensable part of the presented results:

1. Appendix A contains the definition of all the relevant groups and subgroups
by explicit enumeration of their conjugacy classes of elements.

2. Appendix B contains all the character tables of the relevant groups and
subgroups that we have explicitly constructed, since most of them are not available
in the literature.

3. Appendix C contains the classification of momentum vectors in the cubic
lattice and reports the irreducible representations of the classifying group Gisse
to which each momentum class leads when solving the Beltrami equation.

4. Appendix D contains all the branching rules of all the irreps of G1536 with
respect to all considered subgroups. This information is essential to spot all Bel-
trami vector fields that are invariant with respect to some subgroup H; C Gis36.

5. Appendix E contains the description and the list of conjugacy classes of
some additional subgroups that play a role in understanding all cases and subcase
of the classical ABC-flows.

6. Appendix F contains some formulae too large for the main text that had
to be displayed in landscape format.

As for the Introduction it is divided into the following ten sections:

1. Section 1 is the present conceptual introduction.

2. Section 2 presents in a brief way all the elements of lattice theory and
point group theory that are needed in our constructions.

3. Section 3 presents the algorithm for the construction of solutions of the
Beltrami equation that has been systematically implemented on a computer by
means of a purposely written MATHEMATICA code.

4. Section 4 provides the definition of the cubic lattice and of its octahedral
point group that constitute the main example dealt with in the present paper.

5. Section 5 contains the definition and the construction, in the case of the
cubic lattice, of the Universal Classifying Group. The same section contains also
a detailed description of the induction algorithm utilized to construct all the irreps
and the character tables of the relevant groups and subgroups.

6. Section 6 contains the classification of the 48 momentum classes in the
cubic lattice and the description of their organization into point group orbits.

7. Section 7 contains a detailed discussion of several examples of the Beltrami
fields on the cubic lattice with an in depth analysis of their hidden symmetries.

8. Section 8 contains a brief description of the hexagonal lattice and of its
point group Dg. In this case we do not construct the Universal Classifying Group
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and we just use the example to illustrate the new features that appear when the
lattice is not self-dual as in the case of the cubic one.

9. Section 9 briefly presents some examples of the Beltrami vector field on
the hexagonal lattice for illustrative purposes.

10. Section 10, named Conclusions, contains a wide conceptual discussion of
the obtained results and of the entire field of ABC-flows from the perspective of
authors and readers that do not belong to the community of experts in this field
of mathematical hydrodynamics.

To the reader who has no time to follow the technical developments and is
rather interested in obtaining a conceptual assessment of the matters dealt within
the article we suggest the reading of Introduction and, immediately after, of
Conclusions. He can come back to the other sections at another time.

2. BASIC ELEMENTS OF LATTICE AND FINITE GROUP THEORY
NEEDED IN OUR CONSTRUCTION

In this section, we summarize the main definitions and we fix our conventions
for all those items in Lattice Theory and in Finite Group Theory that we are going
to utilize in the sequel and which are essential in our construction.

2.1. Lattices. We begin by fixing our notations for space and momentum
lattices that define a three-torus T2 endowed with a flat metric structure.

Let us consider the standard R® manifold and introduce a basis of three
linearly independent 3-vectors that are not necessarily orthogonal to each other
and of equal length:

w,eR® p=1,...,3 2.1)

Any vector in R can be decomposed along such a basis and we have
r=rtw,. (2.2)
The flat (constant) metric on R? is defined by
Guv = (Wus W), (2.3)

where (, ) denotes the standard Euclidean scalar product. The space lattice A
consistent with the metric (2.3) is the free Abelian group (with respect to sum)
generated by the three basis vectors (2.1), namely:

R®> el & q=q* w,, where ¢" € Z. 2.4)
The momentum lattice is the dual lattice A* defined by the property

RS> PpecA* < (P, €Z VqeA. (2.3)
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A basis for the dual lattice is provided by a set of three dual vectors €* defined
by the relations™:
(W, €") =0y, (2.6)

so that
VpeA* p=p,€", where p,€cZ. (2.7)

2.2. The Three-Torus T3. The three-torus is topologically defined as the
product of three circles, namely:
. R R R
TP=S! xSt xSl== x = x =. 2.8
Z Z Z 2.8)
Alternatively we can define the three-torus by modding R® with respect to a three-
dimensional lattice. In this case, the three-torus comes automatically equipped
with a flat constant metric:
5 _ R
Tg == X
According to (2.9) the flat Riemannian space Tg is defined as the set of equiva-
lence classes with respect to the following equivalence relation:

(2.9)

¥ ~7 iff ¥ —FeA. (2.10)

The metric (2.3) defined on R? is inherited by the quotient space and therefore
it endows the topological torus (2.8) with a flat Riemannian structure. Seen
from another point of view, the space of flat metrics on T2 is just the coset
manifold SL(3,R)/O(3) encoding all possible symmetric matrices, alternatively
all possible space lattices, each lattice being spanned by an arbitrary triplet of
basis vectors (2.1).

2.3. Bravais Lattices. Every lattice A yields a metric g and every metric g
singles out an isomorphic copy SOg(3) of the continuous rotation group SO(3),
which leaves it invariant:

M €8S0.(3) & M'gM=g. (2.11)
By definition, SO4(3) is the conjugate of the standard SO(3) in GL(3,R):
SO4(3) = SSO(3)S™* (2.12)

with respect to the matrix S € GL(3,R) which reduces the metric g to the
Kronecker delta:
STgS=1. (2.13)

*In the sequel for the scalar product of two vectors we utilize also the equivalent shorter notation
ad-b=(a-b).
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Notwithstanding this, a generic lattice A is not invariant with respect to any proper
subgroup of the rotation group G C SO4(3) = SO(3). Indeed, by invariance of
the lattice one understands the following condition:

VyeG and VgeA: ~-deA. (2.14)

Lattices that have a nontrivial symmetry group G C SO(3) are those relevant
to Solid State Physics and Crystallography. There are 14 of them grouped in
7 classes that were already classified in the XIX century by Bravais [20]. The
symmetry group G of each of these Bravais lattices Ap is necessarily one of
the well-known finite subgroups of the three-dimensional rotation group O(3).
In the language universally adopted by Chemistry and Crystallography for each
Bravais lattice Ap, the corresponding invariance group Ggp is named the Point
Group. For purposes different from our present one, the point group can be taken
as the lattice invariance subgroup within O(3) that, besides rotations, contains
also improper rotations and reflections. Since we are interested in the Beltrami
equation, which is covariant only under proper rotations, of interest to us are only
those point groups that are subgroups of SO(3).

According to a standard nomenclature, the 7 classes of Bravais lattices are
respectively named Triclinic, Monoclinic, Orthorombic, Tetragonal, Rhombohe-
dral, Hexagonal, and Cubic. Such classes are specified by giving the lengths
of the basis vectors W, and the three angles between them, in other words, by
specifying the 6 components of the metric (2.3).

2.4. The Proper Point Groups. Restricting one’s attention to proper rota-
tions, the proper point groups that appear in the 7 lattice classes are either the
cyclic groups Zy, with h = 2, 3,4, or the dihedral groups Dj, with h = 3,4,6, or
the tetrahedral group T, or the octahedral group O24. In this paper we restrict
our attention to the two lattices with the largest possible point groups, namely,
the Hexagonal lattice with dg symmetry and the cubic lattice with O24 symmetry.
We think that these two examples suffice to clarify the principles of the construc-
tion we want to present and furthermore provide the potentially more interesting
Beltrami flows to be analyzed in connection with the problem of the origin of
chaotic trajectories.

2.5. Point Group Characters. Another fundamental ingredient in our con-
struction are the characters of the point group and of other classifying groups that
will emerge in our construction.

Given a finite group G, according to standard theory and notations [21], one
defines its order and the order of its conjugacy classes as follows:

g = |G| = # of group elements,
(2.15)
gi = |Ci| = # of group elements in the conjugacy class C; i =14,...,7.
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If there are r conjugacy classes, one knows from first principles that there is
exactly r inequivalent irreducible representation D* of dimensions n, = dim D*,
such that

d k=g (2.16)

p=1

For any reducible or irreducible representation of dimension d:
VyeG:vy— R[y] € Hom []Rd, Rd} , (2.17)
the character vector is defined as:

XF=ATr (R []), Tr Rp)), ... Tr R}, e (2.18)

The choice of a representative 7; within each conjugacy class C; is irrelevant
since all representatives have the same trace. In particular, one can calculate the
characters of the irreducible representations

X' = X[D"] = {Tr (D* [n]), Tr (D* [pal), ..., Tr (D* [])} . 7 €Ci
(2.19)
that are named fundamental characters and constitute the character table. We
stick to the widely adopted convention that the first conjugacy class is that of
the identity element C; = {e}, containing only one member. In this way, the
first entry of the character vector is always the dimension d of the considered
representation. In the same way we order the irreducible representation starting
always with the identity one-dimensional representation which associates to each
group element simply the number 1.
It is well known that for any finite group G, the character vectors satisfy the
following two fundamental relations:

- g
doXIXG =0y (2.20)
= gi
and
T
> gixt Xy =g, 2.21)
=1

Utilizing these identities one can immediately retrieve the decomposition of any
given reducible representation R into its irreducible components. Suppose that
the considered representation is the following direct sum of irreducible ones:

R =@, a, D", (2.22)

where a,, denotes the number of times, the irrep D* is contained in the direct
sum and it is named the multiplicity. Given the character vector of any considered



930 FRE P., SORIN A.S.

representation R, the vector of its multiplicities is immediately obtained by use
of (2.21):

1 T
a = > gt X (2.23)

Furthermore, one can construct the projectors onto the invariant subspaces a,, D*
by means of another classical formula that we will extensively use in the sequel*

. dimD, <\, &
Mg = — = > X0 > Rl (2.24)
k=1 =1

Ye € Ch

3. THE SPECTRUM OF THE xd OPERATOR ON T3
AND BELTRAMI EQUATION

The main issue of the present paper is the construction of vector fields
defined over the three-torus T? that are eigenstates of the x,d operator, namely
of solutions of the following equations:

*ng(n;I) = M(n) Q)
(3.1)
Q0 [Vims)] = 67,87,

where d is the exterior differential, and %, is the Hodge-duality operator which,

differently from the exterior differential, can be defined only with reference to a
given metric g. By Q"% we denote a one-form:

(niI) — (i) L
QD) = QD) o (3.2)
which is declared to be dual to the vector field we are interested in:

Vi) = Vi) O (3.3)

Qb Vimn)] = Ql(*n;l) V(,:n;J) =80,

and by means of the composite index (n;I) we make reference to the quantized
eigenvalues m,) of the x,d operator (ordered in increasing magnitude |m,)|)
and to a basis of the corresponding eigenspaces

dn
*gdQ =y Q= Q) =N e 0D, (3.4)
I=1

*We recall that according to standard conventions, the first conjugacy class is always the class
of the identity, so that the first component x* of any character is just the dimension of that irrep D,,.
Hence in formula (2.24) dimD,, = D,,.
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the symbol d,, denoting the degeneracy of |m(,)| and c; being constant co-
efficients.

Indeed, since 73 is a compact manifold, the eigenvalues M(n) form a discrete
set. Their values and their degeneracies are a property of the metric g introduced
on it. Here we outline the general procedure to construct the eigenfunctions
of x4d, to calculate the eigenvalues and to determine their degeneracies. What
follows is an elementary and straightforward exercise in harmonic analysis.

In tensor notation, equation (3.1) has the following appearance:

1
5 v |det gl g, €°90,Q, = mQ,,. (3.5)

The equation written above is named the Beltrami equation since it was already
considered by the great Italian mathematician Eugenio Beltrami in 1881 [16],
who presented one of its periodic solutions previously constructed by Gromeka
in 1881. Such a solution was inherited by Arnold and it is essentially the
basis of his Hydrodynamical Model. Here we will see that the Arnold Model
just corresponds to the lowest eigenfunction of the x,d operator in the case
of the cubic lattice. Many more similar models can be constructed choosing
higher eigenvalues, choosing irreducible representation of the point group in their
eigenspaces or changing the lattice.
Introducing the basis vectors of the dual lattice A* we can write

Q=Q,dr" =Q,eldx' = Q;da’, (3.6)
where e!' are the components of the vectors € in a standard orthogonal basis of
R? and , 4

Tt = wL rH (3.7

are a new set of Euclidean coordinates obtained from the original ones r* by
means of the components wj, of the basis vectors W, of the space lattice A.

Recalling that

o . )
= w,, 0; 3@'—%,

(T w “w
with a little bit of straightforward algebra, we can rewrite Eq. (3.1) in the equiv-
alent universal way

(3.8)

1
3 €ijk0i e = Qs p=m. (3.9)

The next task is that of constructing an ansatz for the vector harmonics Y;(x) that
are eigenfunctions of x,d. Since such eigenfunctions have to be well defined on
T3, their general form is necessarily the following one:

Y (k|x) =v; (k) cos(2mk-x)+w; (k)sin(27k-x); keA*. (3.10)
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The condition that the momentum k lies in the dual lattice guarantees that Y;(x)
is periodic with respect to the space lattice A. Indeed, by means of the very
definition of dual lattice (2.5) it follows that

VgeA: Y;(k|x+q) =Y;(k|x). (3.11)

Considering next Eq. (3.9) we immediately see that it implies the further condition
d"Y; = 0. Imposing such a condition on the general ansatz (3.10), we obtain

k-v(k)=0; k-&(k)=0 (3.12)

which reduces the 6 parameters contained in the general ansatz (3.10) to 4.
Imposing next the very equation (3.9), we get the following two conditions:

M U; (k) = T €j5¢ Ifj Wy (k) y (313)
pw; (k) = —meijkjve (k). (3.14)

The two equations are self-consistent if and only if the following condition is
verified:
p? =%k, k). (3.15)

This trivial elementary calculation completely determines the spectrum of the
operator x4 d on Tg endowed with the metric fixed by the choice of a lattice A.
The possible eigenvalues are provided by

mi = +7/(k k), ke A (3.16)

The degeneracy of each eigenvalue is geometrically provided by counting the
number of intersection points of the dual lattice A* with a sphere whose center
is in the origin and whose radius is

r=/(k k). (3.17)

For a generic lattice, the number of solutions of equation (3.17), namely, the
number of intersection points of the lattice with the sphere is just two: +k, so
that the typical degeneracy of each eigenvalue is just 2. If the lattice A is one
of the Bravais lattices admitting a nontrivial point group G, then the number of
solutions of Eq. (3.17) increases since all lattice vectors k that sit in one orbit of
G have the same norm and therefore are located on the same spherical surface.
The degeneracy of the x4 d eigenvalue is precisely the order of the corresponding
G-orbit in the dual lattice A*. It is appropriate to note that the spectrum of the
%4 d operator on vectors is just the square root of the spectrum of the Laplacian
operator on the same space. Indeed, if we have a scalar function ®(x) on TS, it
admits the expansion in harmonics of the form:

Y(k|x)=a(k) cos(2rk -x)+b(k)sin(27k -x), ke A", (3.18)
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and calculating the Laplacian, we obtain

1

AyY (k|x) = 1

" 9,0,Y (k|x) =7k, k)Y (k|x). (3.19)
In particular, all the three components of the vector harmonic (3.10) satisfy the
above equation with the above eigenvalue.

3.1. The Algorithm to Construct Arnold-Beltrami Flows. What we de-
scribed in the previous subsection provides a well-defined algorithm to construct
a series of Arnold-Beltrami flows that can be summarized in a few clear-cut steps,
and it is quite suitable for a systematic computer aided implementation.

The steps are the following ones:

a) Choose a Bravais Lattice A with a nontrivial proper point group L.

b) Construct the character table and the irreducible representations of 4.

¢) Analyze the structure of orbits of 35 on the lattice A and determine the
number of lattice points contained in each spherical layer &,, of the dual lattice
A* of quantized radius r,,:

k(n) €6, <« <k(n)a k(n)> = 7"72“

(3.20)
2P, =16,]|.
The number of lattice points in each spherical layer is always even since if
k € A%, also —k € A* and obviously any vector and its negative have the same
norm. The spherical layer G,, can be composed of one or more B,-orbits. In
any case it corresponds to a fixed eigenvalue m,, = 7, of the xd operator.
d) Construct the most general solution of the Beltrami equation with eigen-
value m,, by using the individual harmonics constructed in Eq. (3.10):

Vi(x)= ) Yi(k[x). (3.21)

x€6,

Hidden in each harmonic Y; (k | x), there are two parameters that are the remainder
of the six parameters v; (k) and w; (k) after conditions (3.12), (3.13), (3.14) have
been imposed. This would amount to a total of 4 P, parameters, yet, since
the trigonometric functions cos (f) and sin (f) are mapped into plus or minus
themselves under change of sign of their argument and since each spherical layer
&,, contains lattice vectors in pairs %k, it follows that the number of independent
parameters is always reduced to 2P,. Hence, at the end of the construction
encoded in Eq.(3.21), we have the Beltrami vector depending on a set of 2P,
parameters that we can call F; and consider as the components of 2 P,,-component
vector F. Ultimately we have an object of the following form:

V(x| F), (3.22)



934 FRE P., SORIN A.S.

which under the point group 34 necessarily transforms in the following way:
VyEePa: V(v x[F) =V (x|RN] F), (3.23)

where J[y] are 2 P, x 2 P,, matrices that form a representation of 3. Equa-
tion (3.23) is necessarily true because any rotation y € 34 permutes the elements
of &,, among themselves.

e) Decompose the representation R[] into irreducible representations of .
Each irreducible subspace f,, of the 2F,, parameter space F defines a streamline
of the Arnold-Beltrami flow:

Cx(t) =V (x(0)|,), (324
which is worth to analyze.

An obvious question which arises in connection with such a constructive
algorithm is the following: How many Arnold—Beltrami flows are there? At
first sight it seems that there is an infinite number of such systems since we can
arbitrarily increase the radius of the spherical layer and on each new layer it
seems that we have new models. Let us however observe that if on two different
spherical layers &, and &,,, there are two orbits of lattice vectors O; and O,
that have the same order

£ =101 = |0y, (3.25)

and furthermore all vectors k,,,y € Oz are simply proportional to their analogues
in orbit O;:
Kny) = Ak(ny); A EZ, (3.26)

then we can conclude that

By redefining the coordinate fields A x = x’ and rescaling time ¢, the two differ-
ential systems (3.24) respectively constructed from layer n; and layer ny can be
identified.

As we shall demonstrate analyzing the case of the cubic lattice and the orbits
of the octahedral group, there is always a finite number of ‘I35 -orbit type on each
lattice A. There is a maximal orbit Oy, that has order equal to the order of the
point group:

|Omax| - |q3A|7 (328)
and there are a few shortened orbits O; (i = 1,..., s) that have a smaller order:
ti = 0| < [Bal. (3.29)

The fascinating property is that for the shortened orbits which seem to play a role
in this context analogue to that of BPS states in another context, property (3.26)
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is always true. The vectors pertaining to the same orbit (; in different spherical
layers are always the same up to a multiplicative factor. Hence, from the shortened
orbits we obtain always a finite number of the Arnold-Beltrami flows. It remains
the case of the maximal orbit for which property (3.26) is not necessarily imposed.
How many independent flows do we obtain considering all the layers? The answer
to the posed question is hidden in number theory. Indeed, we have to analyze how
many different types of triplets of integer numbers satisfy Diophantine equations
of the Fermat type. In Sec. 6, we provide a systematic classification of such triplets
for the cubic lattice showing that there is a finite number of the Arnold-Beltrami
flows.

4. THE CUBIC LATTICE AND THE OCTAHEDRAL POINT GROUP

Let us now consider, within the general frame presented above, the cubic
lattice.

The self-dual cubic lattice (momentum and space lattice at the same time) is
displayed in Fig. 3.

The basis vectors of the cubic lattice Acypic are

Wy = {17070}; Wa = {07 170}; W3 = {0707 1}7 4.1)
which implies that the metric is just the Kronecker delta

Juv = 6;“/7 “4.2)

' 3
%rr. %
(7
; ':3’21745""
/

Fig. 3. A view of the self-dual cubic lattice
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and the basis vectors €* of the dual lattice A* coincide with those of the

cubic
lattice A. Hence the cubic lattice is self-dual:
w,=6" = Acubic = Albic- 4.3)

The subgroup of the proper rotation group which maps the cubic lattice into itself
is the octahedral group O whose order is 24. In the next subsection we recall its
structure.

4.1. Structure of the Octahedral Group Oy4 ~ S4. Abstractly the octahedral
Group Og4 ~ S4 is isomorphic to the symmetric group of permutations of 4
objects. It is defined by the following generators and relations:

T,5: T3=e S?’=e (ST)'=e (4.4)
On the other hand, O4 is a finite, discrete subgroup of the three-dimensional

rotation group and any v € Oz4 C SO(3) of its 24 elements can be uniquely
identified by its action on the coordinates x, ¥, z, as it is displayed below:

e |11 = {zyz} 4 = {-z,-2 -y}

2y = {-y,—zz} 49 = {-=z,z,y}

20 = {-y,z,—x} Cy |43 = {-y,—x,—z}

23 = {-z,—=z,y} 44 = {-z,-y,—x}
Cs |2y = {—zz,—y} 45 = {z,—y,z}

25 = {z,—z,—y} 46 = {y,x,—z} @5)

2% = {z,z,y} 5, = {-y,z,z2}

27 = {y,—z,—x} 52 = {-z,y,x}

2s = {y,z,z} Cy| b3 = {z,y,—x}

31 = {-=z,—y,z} 50 = {y,—z,z}
C?|32 = {-m,y,—2} 55 = {z,—z,y}

33 = {x,—y,—z} 56 = {=z,z,—y}

As one sees from the above list, the 24 elements are distributed into 5 conjugacy
classes mentioned in the first column of the table, according to a nomenclature
which is standard in the chemical literature on crystallography. The relation
between the abstract and concrete presentation of the octahedral group is obtained
by identifying in the list (4.5) the generators 7" and S mentioned in Eq.(4.4).
Explicitly, we have

01 0 01 0
T=2%=| 00 11]; S=4=|1 0 0 (4.6)
1 00 00 -1
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All other elements are reconstructed from the above two using the multiplication
table of the group which is displayed below:

11 21 29 23 24 25 26 27 28 31 32 33 41 42 43 44 45 46 51 52 53 54 55 56
11|11 21 29 23 24 25 26 27 28 31 32 33 41 42 43 44 45 46 51 52 53 54 55 5g
21121 25 24 33 32 11 31 26 23 27 22 23 53 44 56 46 54 42 41 43 51 55 45 52
22122 26 23 11 31 33 32 25 24 28 21 27 45 52 55 54 46 41 42 51 43 56 53 44
23123 32 11 22 23 27 21 33 31 24 26 25 46 51 53 56 41 45 52 42 55 44 43 54
24124 31 33 21 27 28 22 11 32 23 25 26 54 43 45 55 42 53 44 41 56 52 51 46
25|25 11 32 28 22 21 27 31 33 26 24 23 51 46 52 42 55 44 53 56 41 45 54 43
26126 33 31 27 21 22 28 32 11 25 23 24 43 54 44 41 56 52 45 55 42 53 46 51
27127 23 26 31 11 32 33 24 25 21 28 22 52 45 49 51 43 56 55 b4 46 41 44 53
28128 24 25 32 33 31 11 23 26 22 27 271 44 53 41 43 51 55 bg 46 54 42 52 45
31131 28 27 26 25 24 23 22 271 11 33 32 56 b5 46 53 5o 43 54 45 44 51 42 4
32|32 27 28 25 26 23 24 21 22 33 11 31 55 56 54 45 44 51 46 53 52 43 41 42
33|33 22 21 24 23 26 25 25 27 32 31 11 42 41 51 52 53 54 43 44 45 46 56 55| (4.7)
41|41 54 46 45 53 52 44 51 43 55 56 42 11 33 28 26 23 22 27 25 24 21 31 32
49|49 46 54 53 45 44 52 43 51 Bg b5 41 33 11 27 25 24 271 28 26 23 22 32 31
43|43 53 b2 Bg 49 by 41 45 44 46 51 54 26 24 11 28 27 31 32 22 21 33 25 23
44144 49 55 51 b4 46 43 5g 41 D2 45 53 28 21 26 11 32 25 23 31 33 24 22 27
45|45 56 41 46 43 51 54 42 55 53 44 52 22 27 24 32 11 23 25 33 31 26 25 21
46|46 44 45 41 55 42 56 52 53 43 54 51 23 25 31 21 22 11 33 27 23 32 24 26
51151 45 44 55 41 56 42 53 52 54 43 46 25 23 33 27 28 32 31 21 22 11 26 24
52152 41 56 43 46 54 51 55 42 44 53 45 27 22 25 33 31 26 24 32 11 23 21 28
53153 55 42 54 51 43 46 41 56 45 52 44 21 28 23 31 33 24 26 11 32 25 27 22
54154 52 53 42 56 41 55 44 45 51 46 43 24 26 32 22 21 33 11 28 27 31 23 25
55|55 43 51 44 52 53 45 46 54 41 42 56 32 31 22 24 25 28 21 23 26 27 33 11
56|56 51 43 D2 44 45 53 54 46 42 41 55 31 32 21 23 26 27 22 24 25 28 11 33

This observation is important in relation with representation theory. Any linear
representation of the group is uniquely specified by giving the matrix represen-
tation of the two generators T = 25 and S = 4¢. In the sequel this will be
extensively utilized in the compact codification of the reducible representations
that emerge in our calculations.

4.2. Irreducible Representations of the Octahedral Group. There are five
conjugacy classes in Og4 and therefore, according to theory, there are five irre-
ducible representations of the same group, that we name D;, ¢ = 1,...,5. Let us
briefly describe them.

4.2.1. Dy: the Identity Representation. The identity representation which
exists for all groups is that one, where to each element of O we associate the
number 1

V’}/ € Ogy Dl(’}/) =1. (4.8)
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Obviously the character of such a representation is
x1={1,1,1,1,1}. (4.9)

4.2.2. Dy: the Quadratic Vandermonde Representation. The representation
D, is also one-dimensional. It is constructed as follows. Consider the following
polynomial of order six in the coordinates of a point in R3 or T3:

B(x,y,2) = (2% —y?) (2° = 2°) (y° — 2°). (4.10)

As one can explicitly check under the transformations of the octahedral group
listed in Eq. (4.5), the polynomial U(x,y, z) is always mapped into itself modulo
an overall sign. Keeping track of such a sign provides the form of the second
one-dimensional representation whose character is explicitly calculated to be the
following one:

X1 :{171517_17_1}' (4’11)

4.2.3. D3: the Two-Dimensional Representation. The representation Ds is
two-dimensional and it corresponds to a homomorphism

D3 : 024 — SL(Q,Z), (412)

which associates to each element of the octahedral group a 2 x 2 integer valued
matrix of determinant one. The homomorphism is completely specified by giving
the two matrices representing the two generators

ngz(gl ) w:(g ) @13

The character vector of Dj is easily calculated from the above information and
we have

xs = {2,-1,2,0,0}. (4.14)

4.2.4. Dy: the Three-Dimensional Defining Representation. The three-di-
mensional representation D, is simply the defining representation, where the
generators 7' and S are given by the matrices in Eq. (4.6):

Dy(T)=T; Dy(S)=S5. (4.15)

From this information the characters are immediately calculated, and we get

xs ={3,0,—1,-1,1}. (4.16)
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4.2.5. Ds: the Three-Dimensional Unoriented Representation. The three-
dimensional representation D5 is simply that where the generators 7" and S are
given by the following matrices:

01 0 01 0
Ds(T)y=|(0 0 1 |; Ds(S)=| 1 0 0 (4.17)
100 00 1

From this information, the characters are immediately calculated, and we get
x5 =1{3,0,—1,1,—1}. (4.18)

The list of characters is summarized in Table 1.

Table 1. Character table of the proper octahedral group

Class 1 re 1y {Cs,8) {C2,3} {Cs,6} {C4,6}
Irrep
D1, x1= 1 1 1 1 1
Do, x2 = 1 1 1 -1 —1
D3, x3= 2 —1 2 0 0
Dy, xa= 3 —1 —1 1
Ds, x5 = 3 —1 1 —1

5. EXTENSION OF THE POINT GROUP WITH TRANSLATIONS
AND MORE GROUP THEORY

We come now to what constitutes the main mathematical point of the present
paper, namely, the extension of the point group with appropriate discrete sub-
groups of the compactified translation group U( 1)3. This issue bears on a classical
topic dating back to the XIX century, which was developed by crystallographers
and, in particular, by the great Russian mathematician Fyodorov [22]. We refer
here to the issue of space groups which historically resulted in the classification
of the 230 crystallographic groups, well known in the chemical literature, for
which an international system of notations and conventions has been established
that is available in numerous encyclopedic tables and books [20]. Although we
will utilize one key-point of the logic that leads to the classification of space
groups, yet our goal happens to be slightly different and what we aim at is not
the identification of space groups, rather the construction of what we name a
Universal Classifying Group, namely of a group which contains all existing space
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groups as subgroups. We advocate that such a Universal Classifying Group is the
one appropriate to organize the eigenfunctions of the x4d operator into irreducible
representations and eventually to uncover the available hidden symmetries of all
Arnold-Beltrami flows.

5.1. The Idea of Space Groups and Frobenius Congruences. The idea of
space groups arises naturally in the following way. The covering manifold of the
T3 torus is R? which can be regarded as the following coset manifold:

R3 ~ i
~ 5S0(3)

E3 =1S0(3) = SO(3) x T3, (5.1)

where 72 is the three-dimensional translation group acting on R? in the standard
way
Vte T3 VxeR? | t:x—x+t, (5.2)

and the Euclidean group E3 is the semidirect product of the proper rotation
group SO(3) with the translation group 73. Harmonic analysis on R? is a
complicated matter of functional analysis since 7> is a noncompact group and
its unitary irreducible representations are infinite-dimensional. The landscape
changes drastically when we compactify our manifold from R? to the three-torus
T3. Compactification is obtained taking the quotient of R® with respect to the
lattice A C 73. As a result of this quotient, the manifold becomes S! x S! x S!
but also the isometry group is reduced. Instead of SO(3) as rotation group we are
left with its discrete subgroup o C SO(3) which maps the lattice A into itself
(the point group) and instead of the translation subgroup 73 we are left with the
quotient group:
73

T3 = T U(1) x U(1) x U(1). (5.3)
In this way we obtain a new group which replaces the Euclidean group and which
is the semidirect product of the point group P, with T3

B =Pa x 3. (5.4)

The group &, is an exact symmetry of the Beltrami equation (3.1) and its action
is naturally defined on the parameter space of any of its solutions V (x|F') that we
can obtain by means of the algorithm described in Subsec.3.1. To appreciate this
point, let us recall that every component of the vector field V (x|F) associated
with a 8, point-orbit O is a linear combination of the functions cos [27k; - x|
and sin [27k; - x|, where k; € O are all the momentum vectors contained in the
orbit. Consider next the same functions in a translated point of the three-torus
x' =x + ¢, where ¢ = {&1, &, &3} is a representative of an equivalence class
¢ of constant vectors defined modulo the lattice

c=c+y; VyeA (5.5



CLASSIFICATION OF ARNOLD-BELTRAMI FLOWS 941

The above equivalence classes are the elements of the quotient group T3. Using
standard trigonometric identities, cos[27k; - x + 27 k; - ¢] can be re-expressed
as a linear combination of the cos[27k; - x] and sin [27k; - x] functions with
coefficients that depend on trigonometric functions of c¢. The same is true for
sin [27k; - x 4+ 27 k; - c¢]. Note also that because of the periodicity of the trigono-
metric functions, the shift in their argument by a lattice translation is not effective,
so that one deals only with the equivalence classes (5.5). It follows that for each
element ¢ € T3, we obtain a matrix representation M, realized on the F para-
meters and defined by the following equation:

V (x+c|F)=V (x|M.F). (5.6)

As we already noted in Eq. (3.23), for any group element v € 35, we also have
a matrix representation induced on the parameter space by the same mechanism:

VyePa: 71 V(y-x|F)=V(x[R)H] F). (5.7)

Combining Egs. (5.6) and (5.7), we obtain a matrix realization of the entire group
B, in the following way:

V(v x+c|F)=7v-V(x|RNH] - M.-F), (5.8)
(8
V(v,¢) €6x — DI(v, )] = R[] M.. (5.9)

Actually the construction of the Beltrami vector fields in the lowest-lying point-
orbit, which usually yields a faithful matrix representation of all group elements,
can be regarded as an automatic way of taking the quotient (5.3), and the resulting
representation can be regarded as the defining representation of the group &,.

The next point in the logic which leads to space groups is the following
observation. &, is an unusual mixture of a discrete group (the point group) with
a continuous one (the translation subgroup T3 ). This latter is rather trivial, since
its action corresponds to shifting the origin of coordinates in three-dimensional
space and, from the point of view of the first-order differential system that
defines trajectories (see Eq. (1.4)), it simply corresponds to varying the integration
constants. Yet, in &, there are some discrete subgroups which can be isomorphic
to the point group Pa, or to one of its subgroups Hyx C P, without being
their conjugate. Such subgroups cannot be disposed of by shifting the origin of
coordinates and, consequently, they can encode nontrivial hidden symmetries of
the dynamical system (1.4). The search for such nontrivial discrete subgroups of
B, is the mission accomplished by crystallographers, the result of the mission
being the classification of space groups.

The simplest and most intuitive way of constructing space-groups relies on
the so-called Frobenius congruences [23,24]. Let us outline this construction.
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Following classical approaches, we use a 4 x 4 matrix representation of the
group Gp

. v ¢
W%QE®AﬁINWwH—<O 1>~ (5.10)
Performing the matrix product of two elements, in the translation block one has
to take into account equivalence modulo lattice A, namely,

71‘& . vz‘cz _ 71'72‘71c2+c1+A 5.11)
01 o1t ) \ o | 1 ' '

Utilizing this notation, the next step consists of introducing translation deforma-
tions of the generators of the point group searching for deformations that cannot
be eliminated by conjugation. We illustrate the steps of such a construction
utilizing the example of the cubic lattice and of the octahedral point group.

5.1.1. Frobenius Congruences for the Octahedral Group O24. The octahedral
group is abstractly defined by the presentation displayed in Eq.(4.4). As a first
step we parameterize the candidate deformations of the two generators 7" and S
in the following way:

01 0ln 00 1|0

) 00 1 . 0 -1 0

7= N P 21 512
1 0 073 1 0|o3
00 01 0 01

which should be compared with Eq. (4.6). Next we try to impose on the deformed
generators the defining relations of Og4. By explicit calculation we find:

1 0 O0|m+m2+73 1 0 0|o1+03
T?’: 01 0|mm+m+T3 : 32: 01 010

0 0 1| mm+m+T13 0 0 1|o01403
0 0 0|1 0 0 01
1 0 0] 401+4m3

A a4 0 1 00

@ﬂ - , (5.13)

0 0 1|0
0 0 0|1

so that we obtain the conditions

TM+To+T13E€ZL; o01+03€%Z; 4oy +4m3 €7, (5.14)
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which are the Frobenius congruences for the present case. Next we consider
the effect of conjugation with the most general translation element of the group
Bcubic- Just for convenience, we parameterize the translation subgroup as follows:

1 0 Ojla+c
0 1 0|d
t = (5.15)
0 0 1|a—c
0 0 01
and we get
01 Ola—-b+c+mn 0 0 1| 2c+ 01
. 0 0 1|- b+c N 0 -1 02
(el at+b+c+ 1 ;t5t71= + o2
1 0 0| 7m—2¢ 1 0 0] o3—2c
0 0 01 0 01
(5.16)

This shows that by using the parameters b, c, we can always put o1 = o9 = 0,
while using the parameter a we can put 73 = 0 (this is obviously, not the only
possible gauge choice, but it is the most convenient) so that Frobenius congruences
reduce to

To+T3 €L, o3 €7L; 413 € L. (5.17)

Equation (5.17) is of great momentum. It tells us that any nontrivial subgroup of
Bcubic, Which is not conjugate to the point group, contains point group elements
extended with rational translations of the form ¢ = {7+, 72, 72 } Up to this point,
our way and that of crystallographers was the same: hereafter our paths separate.
The crystallographers classify all possible nontrivial groups that extend the point
group with such translation deformations: indeed looking at the crystallographic
tables one realizes that all known space groups for the cubic lattice have translation
components of the form ¢ = {7, 72, %} On the other hand, we do something
much simpler which leads to a quite big group containing all possible space
groups as subgroups, together with other subgroups that are not space groups in
the crystallographic sense.

5.2. The Universal Classifying Group for the Cubic Lattice: Gis36. In-
spired by the space-group construction and by Frobenius congruences we just
consider the subgroup of &.,nic, Where translations are quantized in units of L
In each direction and modulo integers there are just four translations 0, %, %, %,
so that the translation subgroup reduces to Zy ® Z4 ® Z4 that has a total of 64
elements. In this way we single out a discrete subgroup Gis3s C Scypic of order

24 x 64 = 1536, which is simply the semidirect product of the point group Oo4
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with Zy @ Zy Q@ Zy:
Geubic D Gisze =~ Oou X (Zy @ Zy @ Zy). (5.18)

We name Gisse the universal classifying group of the cubic lattice, and its
elements can be labeled as follows:

2n1 2n9 2ns Pq € Oa4
) ) = 1 n2 ns3
144 Sl ez ®Zi 9Ly

47474

(5.19)
where for the elements of the point group we use the labels p, established in
Eq. (4.5), while for the translation part our notation encodes an equivalence class
of translation vectors ¢ = { “t, Yﬁf, s}, The reason why we use {221, 212 213
is simply due to computer convenience. In the quite elaborate MATHEMATICA
codes that we have utilized to derive all our results, we internally used such a
notation, and the automatic LaTeX Export of the outputs is provided in this way.
In view of Eq. (5.9), we can associate an explicit matrix to each group element of
G1536, starting from the construction of the Beltrami vector field associated with
one-point orbit of the octahedral group. We can consider such matrices as the
defining representation of the group if the representation is faithful. We used the
lowest-lying 6-dimensional orbit to be discussed in Sec.7, which we verified to be
indeed faithful. Three matrices are sufficient to characterize completely the defin-
ing representation just as any other representation: the matrix representing the
generator 7', the matrix representing the generator .S, and the matrix representing

Gisse € {Pq,

the translation {7, 72, % } We have found
000 010
0 00 0 01
01 0 0 0 O
RIAT] = ;
10 00 00
000 1 00
0O 01 0 0O
(5.20)
0O 01 0O 0
0 00 1 0 0
10 00 0 O
R1A5] = ,
01000 O
0 00 0 O -1
0O 00 0 -1 0
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M
2n1 2ng 2ng

(522 2y T
cos (%ng) 0 sin (%ng) 0 0 0
0 cos (gng) 0 0 —sin (gng) 0
| —sin (%’I’Lg) 0 cos (g’l’Lg) 0 0 0
o 0 0 cos (gnl) 0 sin (gnl)
0 sin (%ng) 0 0 cos (%ng) 0
0 0 0 —sin (%nl) 0 cos (gnl)

(5.21)

Relying on the above matrices, any of the 1536 group elements obtains an explicit
6 x 6 matrix representation upon the use of formula (5.9). As is already stressed,
we can regard that above as the actual definition of the group Gis3¢ which from
this point on can be studied intrinsically in terms of pure group theory without
any further reference to lattices, Beltrami flows, or dynamical systems.

5.3. Structure of the G1536 Group and Derivation of Its Irreps. The identity
card of a finite group is given by the organization of its elements into conjugacy
classes, the list of its irreducible representation and finally its character table.
Since ours is not any of the crystallographic groups, no explicit information is
available in the literature about its conjugacy classes, its irreps, and its character
table. We were forced to do everything from scratch by ourselves and we could
accomplish the task by means of purposely written MATHEMATICA codes.
Most of our results are presented in the form of tables in Appendices. Since this
is a purely mathematical information, we think that it might be useful also in other
contexts different from the present context that has motivated their derivation.

Conjugacy Classes. The conjugacy classes of Gisgs are presented in Ap-
pendix A.1. There are 37 conjugacy classes whose populations are distributed as
follows:

1) 2 classes of length 1,

2) 2 classes of length 3,

3) 2 classes of length 6,

4) 1 class of length 8§,

5) 7 classes of length 12,

6) 4 classes of length 24,

7) 13 classes of length 48,

8) 2 classes of length 96,

9) 4 classes of length 128.

It follows that there must be 37 irreducible representations whose construction
is a task to be solved.
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5.3.1. Strategy to Construct the Irreducible Representations of a Solvable
Group. In general, the derivation of the irreps and of the ensuing character table
of a finite group G is a quite hard task. Yet a definite constructive algorithm can
be devised if G is solvable and if one can establish a chain of normal subgroups
ending with an Abelian one, whose index is, at each step, a prime number g;,
namely, if we have the following situation:

G =Gy, > Gn,_, > ... > GN, > Gy, = Abelian group,

G,
GNi—l

(5.22)

= = ¢; = prime integer number.
Ni—y

The algorithm for the construction of the irreducible representations is based on
an inductive procedure [23] that allows one to derive the irreps of the group Gy;,
if we know those of the group Gy, , and if the index ¢; is a prime number.
The first step of the induction is immediately solved because any Abelian finite
group is necessarily a direct product of cyclic groups Zj, whose irreps are all
one-dimensional and obtained by assigning to their generator one of the kth roots
of unity. In our case the index ¢; is always either 2 or 3 which, to the none’s
wonder, is the same situation met in the construction of crystallographic group
irreps. Hence we sketch the inductive algorithms with particular reference to the
two cases of ¢ = 2 and g = 3.

5.3.2. The Inductive Algorithm for Irreps. To simplify notation, we name
G = Gy, and H = Gy,_,. By hypothesis, H < G is a normal subgroup.

Furthermore, ¢ = |G/H| = prime number (in particular, ¢ = 2,0r3). Let us
name D, [H,d,] the irreducible representations of the subgroup. The index «
(with a = 1,...,7rg = # of conj. classes of H ) enumerates them. In each

case d,, denotes the dimension of the corresponding carrying vector space or, in
mathematical jargon, of the corresponding module.

The first step to be taken is to distribute the H irreps into conjugation classes
with respect to the bigger group. Conjugation classes of irreps are defined as
follows. First, one observes that, given an irreducible representation D,, [H, d,],
for every g € G we can create another irreducible representation Dég) [H,da],
named the conjugate of D, [H,d,] with respect to g. The new representation is
as follows:

VheH : DY [H,dy] (k)= Das[H,do) (g hg). (5.23)
That the one defined above is a homomorphism of H onto GL(d,,R) is obvious

and, as a consequence, it is also obvious that the new representation has the same
dimension as the first one. Secondly, if g = h € H is an element of the subgroup,
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we get

DM [H,dy] (h) = A" Dy [H,do] (h) A, where A= Dg,[H,ds] (h),

(5.24)
so that conjugation amounts simply to a change of basis (a similarity transforma-
tion) inside the same representation. This does not alter the character vector, and
the new representation is equivalent to the old one. Hence the only nontrivial
conjugations to be considered are those with respect to representatives of the
different equivalence classes in G/H. Let us name v;, (i =0,...,¢—1) a set
of representatives of such equivalence classes and define the orbit of each irrep
D, [H,d,] as follows:

Orbit, = {ngf)) [H,da], DOV [H,dy], ..., DGa=D) [H,da]}. (5.25)

Since the available irreducible representations are a finite set, every D((lvi) [H, dq]
necessarily is identified with one of the existing Dg [H, dg]. Furthermore, since
conjugation preserves the dimension, it follows that d, = dg. It follows that
‘H-irreps of the same dimensions d arrange themselves into G-orbits:

Orbit, [d] = {Da, [H,d], Da, [H,d], ..., Do, [H,d]}, (5.26)

and there are only two possibilities, either all «; = « are equal (self-conjugate
representations) or they are all different (nonconjugate representations).

Once the irreps of H have been organized into conjugation orbits, we can
proceed to promote them to irreps of the big group G according to the following
scheme:

A) Each self-conjugate H-irrep D, [H, d] is uplifted to ¢ distinct irreducible

G-representations of the same dimension d, namely D,, [G, d], where i = 1,...,q.
B) From each orbit 3 of ¢ distinct but conjugate H-irreps
{D(yl [H,d], Do, [H,d], ..., Do, [H, d]}, one extracts a single (¢ x d)-dimen-

sional G-representation.

A) Uplifting of Self-Conjugate Representations. Let D, [H,d] be a self-
conjugate irrep. If the index g of the normal subgroup is a prime number, this
means that G/H ~ Z,. In this case the representatives v, of the ¢ equivalences
classes that form the quotient group can be chosen in the following way:

V=€ Y%2=0"7=0. ., %=9"", (5.27)

where g € G is a single group element satisfying g? = e. The key-point in up-
lifting the representation D,, [H, d] to the bigger group resides in the determination
of a d x d matrix U that should satisfy the following constraints:

Ul =1, (5.28)
VheH : Dy[H,d (g7 'hg)=U""'Dy[H.d](h)U. (5.29)
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These algebraic equations have exactly ¢ distinct solutions Uy}, and each of the
solutions leads to one of the irreducible G-representations induced by D, [H, d].

Any element v € G can be written as v = gP h, with p = 0,1,..., ¢ — 1 and
h € H. Then it suffices to write
Da, [6:d)(2) = Da, [0,d) (4" ) = Ufy Da [ d| (). (5.30)

B) Uplifting of Not Self-Conjugate Representations. In the case of not self-
conjugate representations, the induced representation of dimensions g x d is con-
structed relying once again on the possibility to write all group elements in the
form v = ¢gP h, with p = 0,1,..., ¢ — 1 and h € H. Furthermore chosen one
representation D, [H, d] in the g-orbit (5.25), the other members of the orbit can

be represented as D&gj) [H,ds], with j = 1,...,¢— 1. In view of this, one
writes:
VheH: D,[G,d](h) =
Dy [H,d] (k) 0 0 e 0
0 DY [H,d] (h) 0 .. 0
_ 0 0 DY 1, d) (). .. 0 ,
0 0 0 [DY" 1, d) ()
0 1
1 0
9: DalG,d(g)=| 0 01, (5.31)
0j0].... 110

v=9"h: Dal[G,d|(9) = (Da[G,d] (9))" DalG,d](h).

5.3.3. Derivation of Gissg Irreps. Utilizing the above-described algorithm,
implemented by means of purposely written MATHEMATICA codes, we were
able to derive the explicit form of the 37 irreducible representations of G536 and
its character table. The essential tool is the following chain of normal subgroups:

Gissze D> Gres D> Gase D> Giog D> Gey, (5.32)
where Ggqg ~ Z4 X Z4 X Zg4 is Abelian and corresponds to the compactified
translation group. The above chain leads to the following quotient groups:

G G G G
1536 To: 768 Zs; 20~ ZLo; b R Zs. (5.33)
Gres Gase 4
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The description of the normal subgroups is given in Appendix in
Secs. A.2, A3, A4, AS.

The result for the irreducible representations, thoroughly described in Ap-
pendix B.1, is summarized here. The 37 irreps are distributed according to the
following pattern:

a) 4 irreps of dimension 1, namely D1,..., Dy,
b) 2 irreps of dimension 2, namely Ds, ..., Dg,
¢) 12 irreps of dimension 3, namely D, ..., Dis,
d) 10 irreps of dimension 6, namely D7, ..., Dag,
e) 3 irreps of dimension 8, namely Doy, ..., D31,
f) 6 irreps of dimension 12, namely Dso, ..., D37.

The character table is displayed in Egs. (B.1), (B.2).

The irreducible representations of the universal classifying group are a funda-
mental tool in our classification of the Arnold-Beltrami vector fields. Indeed, by
choosing the various point group orbits of momentum vectors in the cubic lattice,
according to their classification presented in the next Sec. 6, and constructing the
corresponding Arnold-Beltrami fields, we obtain all of the 37 irreducible rep-
resentations of Gis36. Each representation appears at least once and some of
them appear several times. Considering next the subgroups H; of Gis3¢ and the
branching rules of Gisse irreps with respect to H;, we obtain an explicit algo-
rithm to construct the Arnold—Beltrami vector fields with prescribed invariance
groups H;. It suffices to select the identity representation of the subgroup in the
branching rules. These are the hidden symmetries advocated in our title. We
come back to the issue of subgroups in the next and following sections.

6. THE SPHERICAL LAYERS AND
THE OCTAHEDRAL LATTICE ORBITS

Let us now analyze the action of the octahedral group on the cubic lattice.
We define the orbits as the sets of vectors k € A that can be mapped one into the
other by the action of some element of the point group, namely of Oy, in the
case of the cubic lattice:

kie®O and k€O = 3’}/6024/’)/-1{1:1{2. (6.1)

There are four types of orbits on the cubic lattice:
Orbits of Length 6. Each of these orbits is of the following form:

Os = {{0.0.~n}, {0.0,n}, {0.~n.0}, {0,n.0}, {~n.0,0}, {n.0,0}} ,
(6.2)
where n € Z is any integer number.
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Orbits of Length 8.

{_na -n, _n}a

o

{TL, —-n, —TL},

{_na -n, TL},

{TL, —-n, 71},

{—71, n, —TL},

{TL, n, _n}a

{—TL, n, TL},

{n,n,n}

} , (6.3)

where n € Z is any integer number.
Orbits of Length 12.

{0,—n,—n}, {0,—n,n}, {0,n,—n}, {0,n,n},

O12 =< {-n,0,—n}, {-n,0,n}, {-n,—n,0}, {-n,n,0}, p, (6.4
{n,0,—n}, {n,0,n}, {n, —n,0}, {n,n,0}

where n € Z is any integer number.
Orbits of Length 24.

{-p,—a.r},  A{-p¢,—r}, {-p,—r,—d}, {-pra},
{p.—¢,—r}, Ap.qr} {p,—r,q}, {p,r,—a},

0y, = J 7o rh A=aprt A=a,=rph o {=ar —p) 7
{a.—p,7}, {e.p.—r},  A{a,—r.—p}, a7 p}
{-r.=p,a},  A{-rp.—a}, {-r,—¢,-p}, {-7,q,p},
{r,=p.,—a}, {r,p.q}, {r,—a,p}, {r,a,—p},

(6.5)

where {p, ¢, r} € Z is any triplet of integer numbers that are not all three-equal in
absolute value. Considering the spherical layers of increasing quantized squared
radius 72, we discover that for the first low-lying layers, the points lying on
the surface arrange themselves into just one orbit. At 72 = 9, we observe the
first splitting of the layer into two orbits, one of length 6, the other of length
24. Such splittings occur again and again with more and more orbits populating
the same spherical surface. Yet single orbits appear also at higher values of
r2 as is shown in Table 2. The notation adopted in the figure is the following
one: {02’2,8} denotes the orbit of length ¢ = 6,8,12, or 24, of momentum
lattice points whose norm is k> = r2. The index i enumerates the individual
orbits placed on the sphere of radius r. Predictions of splittings and of orbit
degeneracies require investigations in number theory and diophantine equations
that we have not addressed within the scope of the present paper. A visual image
of the complicated pattern produced by the distribution of orbits with respect to
the quantized radius is provided in Fig. 4.

6.1. Classification of the 48 Types of Orbits. Notwithstanding the number
theory complicacies mentioned above, the notion of Universal Classifying Group
introduces a very effective guide-line to tame the zoo of point orbits displayed
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Table 2. Table of the first spherical layers of momentum vectors in the cubic self-dual
lattice

72 | Number of Points | Octahedral Point Group Orbits
0 1 {{1,11}

1 6 {{01,6}}

2 12 {{o1,12}}

3 {{o%,8}}

i {{ot.6}}

5 24 {{0?,24}}

6 24 {{of,24}}

8 12 {{ot,12}}

9 30 {{0?,6} ®{03,24}}
10 24 {{o1°,24}}

11 24 {{o1',24}}

12 8 {{oi*8}}

13 24 {{o1? 24}}

14 48 {{01*,24} @ {03",24}}
16 6 {{oi°6}}

17 48 {{oi", 24} @ {057, 24} }
18 36 {{o1* 24} @ {03°, 12} }
19 24 {{o1%,24}}

20 24 {{07°,24}}

21 48 {{o7', 24} @ {03, 24} }
22 24 {{o?,24}}

24 24 {{o7*,24}}

25 30 {{oP*,6} @ {03°,24} }
26 72 {{07° 24} @ {03°,24} & {03°, 24} }
27 32 {{oi",24} ® {037, 8} }
29 72 {{07°,24} @ {03°,24} @ {O3°, 24} }
30 48 {{0%°, 24} @ {03°, 24} }
32 12 {{o?* 12}}

33 48 {{o1*,24} & {03%,24} }
34 48 {{ot*, 24} @ {03, 24} }
35 48 {{o*,24} @ {03°,24} }
36 30 {{oi°,6} @ {03°,24} }
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Fig. 4. A view of the distribution of the number of lattice points lying on a surface of
squared radius 72. On the horizontal axis we have r2, on the vertical axis we have the
number of points lying on that sphere. As one sees, the distribution is very much irregular
and follows a complicated pattern

in Fig.4. The first observation is that the group Gis3¢ has a finite number of
irreducible representations so that, irrespectively of the above-complicated pattern,
the number of different types of the Arnold—Beltrami vector fields has also got to
be finite, namely, as many as the 37 irreps, times the number of different ways
to obtain them from orbits of length 6,8,12, or 24. The second observation is
the key role of the number 4 introduced by Frobenius congruences which was
already the clue to the definition of Gi536. What we should expect is that the
various orbits should be defined with integers modulo 4, in other words, that we
should just consider the possible octahedral orbits on a lattice with coefficients in
Z4 rather than Z. The easy guess, which is confirmed by computer calculations,
is that the pattern of Gis36 representations obtained from the construction of the
Arnold-Beltrami vector fields according to the algorithm of Subsec. 3.1 depends
only on the equivalence classes of momentum orbits modulo 4. Hence we have
a finite number of such orbits and a finite number of the Arnold—Beltrami vector
fields which we presently described. Let us stress that an embryo of the exhaustive
classification of orbits we are going to present was introduced by Arnold in his
paper [8], Arnold’s was only an embryo of the complete classification for the
following two reasons:

1. The types of momenta orbits were partitioned according to odd and even
(namely according to Zs, rather than Z,).

2. The classifying group was taken to be the crystallographic GSa4, as defined
by us in Appendices (see Sec.A.9), which is too small in comparison with the
universal classifying group identified by us in Gissg.
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Let us then present the complete classification of point orbits in the momen-
tum lattice. First, we subdivide the momenta into five groups:

A) Momenta of type {a,0,0} which generate O24 orbits of length 6 and
representations of the universal group Gissg also of dimensions 6.

B) Momenta of type {a,a,a} which generate Oo4 orbits of length 8 and
representations of the universal group G536 also of dimensions 8.

C) Momenta of type {a,a,0} which generate Oz4 orbits of length 12 and
representations of the universal group Gissg also of dimensions 12.

D) Momenta of type {a,a,b} which generate Os4 orbits of length 24 and
representations of the universal group G536 also of dimensions 24.

E) Momenta of type {a,b,c} which generate Oo4 orbits of length 24 and
representations of the universal group G536 of dimensions 48.

The reason why in the cases A)...D) the dimension of the representation
R (Gis36) coincides with the dimension |O| of the orbit is simple. For each
momentum in the orbit (Vk; € O) its negative is also in the same orbit (—k; € O),
hence the number of arguments ©; = 27 k; - x of the independent trigonometric
functions sin (©;) and cos (0;) is & x 2|O| = |O| since sin (+0;) = +sin (6;)
and cos (£0;) = cos (6;).

In case E), instead, the negatives of all the members of the orbit O are not in
O. The number of independent trigonometric functions is therefore 48 and such
is the dimension of the representation R (G1536).

In each of the five groups, one still has to reduce the entries to Z,, namely,
to consider their equivalence class mod 4. Each different choice of the pattern
of Z,4 classes appearing in an orbit leads to a different decomposition of the
representation into irreducible representation of Gis3g. A simple consideration
of the combinatorics leads to the conclusion that there are in total 48 cases
to be considered. The very significant result is that all of the 37 irreducible
representations of Gis3¢ appear at least once in the list of these decompositions.
Hence for all the irrepses of this group, one can find a corresponding Beltrami
field and for some irrepses such a Beltrami field admits a few inequivalent
realizations. The list of the 48 distinct types of momenta is the following one:

k={0,0,1+4p},

k ={0,0,2+4p},

k ={0,0,3+ 4p},

k ={0,0,4 +4p},
k={1+4p,1+4p,1+4u},
k={2+4p,2+4u,2 + 4u},
k={3+4p,34+4u,3+4u},
k={4+4p,4+4u,4+ 4u},
k={0,1+4v,1+ 4v},

XN R W=
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10. k = {0,2 + 4,2 + 40},

11 k= {0,3 + 41,3 + 4v},

12. k={0,4+4v, 4+ 4v},

13. k={1+4p,1+ 4,2+ 4p},
4. k={1+4+4p,1+4p,3+ 4p},
15. k={1+4+4p,1+4p,4+ 4p},
16. k= {1 +4u,1+ 4,5+ 4p},
17. k= {14+ 4p,2 +4p,2 + 4p},
18. k={2+4p,2+4u,6 + 4p},
19. k= {2 +4u,2 +4u,3 + 4p},
20. k= {2 +4p, 2+ 4p,4 + 4p},
21. k= {1 +4p,3 +4u,3 + 4p},
22. k={2+4p,3 +4u,3 + 4p},
23. k= {3 +4u,3+4p, 7+ 4p},
24, k= {1 +4p, 4+ 4p, 4 + 4p},
25. k={2+4u, 4+ 4u,4 + 4p},
26. k= {3 +4p, 4+ 4p,4+ 4p},
27. k={4+4p, 4+ 4u,8 + 4p},
28. k= {3 +4u,3 +4u, 4+ 4p},
29. k={4+4u,8+4v,12+ 4p},
30. k={1+4u,4+4v,8+4p},
31. k={2+4u, 4+ 4v,8 + 4p},
32. k={3+4u,4+4v,8+ 4p},
33. k={1+4+4u,2 +4v,4+ 4p},
34. k = {1 +4u,3 +4v,4+ 4p},
35. k={2+4u, 4+ 4v,6 + 4p},
36. k={2+4+4u,3 +4v,4+ 4p},
37. k= {1 +4u,5 + 4v,9 + 4p},
38. k={1+4+4u,2+4v,5+4p},
39. k={1+4+4u,3+4v,5+4p},
40. k = {14+ 4p,2 +4v,6 + 4p},
41. k= {1 +4p,2 + 4v,3 + 4p},
42. k = {1+ 4,3+ 4v, 7+ 4p},
43. k = {24 4p,6 +4v,10+ 4p},
4. k = {2+ 4p, 3+ 4v,6 + 4p},
45. k = {2+ 4,3+ 4v, 7+ 4p},
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46. k = {34+ 4u, 7+ 4v,11 4+ 4p},
47. k = {14+ 4p,4 + 4v,5+ 4p},
48. k = {3+ 4p, 4+ 4v,7+ 4p},

where u, v, p € Z. The simplest and lowest-lying representative of each of the
48 classes of equivalent momenta is obtained choosing ¢ = v = 0. In Appen-
dix C, for each of the 48 classes enumerated above, we provide the decomposition
of the corresponding Beltrami vector field parameter space into G536 irreducible
representations. These results are the outcome of extensive MATHEMATICA
calculations that were performed with purposely written codes. As is already
stressed, the most relevant point is that all the 37 irreps of the Classifying Group
are reproduced: this is the main reason for its name.

7. DISCUSSION OF EXPLICIT EXAMPLES OF ARNOLD-BELTRAMI
FLOWS FROM OCTAHEDRAL POINT ORBITS

In this section, utilizing the algorithm outlined in Subsec.3.1, we construct
the Arnold—Beltrami flows associated with some of the 48 types of octahedral
point orbits in the cubic lattice that have been classified in Sec.6. We consider
examples with orbits of length 6, 8,12, and 24. In all cases we devote attention to
the group structure and we exhibit the explicit form of the Arnold-Beltrami flows
that have the largest possible group of symmetries available in that orbit. For
some of these examples, we also exhibit computer generated plots of the vector
field and of its associated streamlines.

In view of the popularity of the ABC-flows in the hydrodynamical literature,
particularly in depth analysis, the lowest-lying octahedral orbit of length 6 is
presented in which these models are embedded. Our main concern is to unveil
the group theoretical structure behind the celebrated simple form of Eq.(1.17),
which so far seemed to be a sort of miraculous arbitrary invention. In particular,
we spot the subgroup of the Universal Classifying Group with respect to which
the three parameters (A, B, C') form an irreducible representation. Similarly, we
exhibit the groups and subgroups associated with the various popularly studied
subcases (A, A, A), (A, B,0), (A, A,0), and (A,0,0).

For the other considered orbits of length 8, 12, 24, we provide a similar group
theoretical analysis although less detailed, since, as we already stated above, we
mainly confine ourselves to the construction of the Arnold-Beltrami flows with
the largest group of hidden symmetries.

7.1. The Lowest-Lying Octahedral Orbit of Length 6 in the Cubic Lattice
and the ABC-Flows. Let us now consider case 1 in our list of 48 classes of
momentum vectors. If we take the representative p = 0 of the class, we obtain
the lowest-lying orbit of length 6 of the cubic lattice. Under the action of the
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Fig. 5. A view of the octahedral 6-orbit in the
cubic lattice, corresponding to the vertices of
a regular octahedron

octahedral point group Oay, the vector k = {0,0, 1} is mapped into its other five
copies that together with it constitute the vertices

P1 = {_1a070}7 P4 = {07()’1}7
b2 = {0? _1?0}; b5 = {0? 170}? (7.1)
p3s = {0?07 _]-}7 bs = {1?070}
of a regular octahedron inscribed in the sphere of radius r? = 1, as is depicted in
Fig.5.
Applying the construction algorithm (see Subsec.3.1) of sum-over-lattice

points that belong to a point group orbit, we obtain the following six-parameter
vector field:

VO (r|F) =
2cos (2mO3) F1+ 2 cos (2mO3) Fo+ 2sin (2703) F3— 2sin (2703) F;
= | —2sin(27O3) F} + 2 cos (2mO3) F3+ 2 cos (2m04) Fy+ 2sin (27O1) Fg |,
2sin (2m032) Fo— 2sin (2701) Fy+ 2 cos (2mO32) F5+ 2 cos (2704 ) Fg

(7.2)
where F; (i = 1,...,6) are real numbers, and where the arguments of the
trigonometric functions are the following ones:

@1 =, @2 =Y, @3 =Z. (73)

The action of the octahedral group Og24 on this Beltrami vector field is that
presented in Eq. (3.23), where - are the 3 x 3 matrices of the fundamental defining
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representation, while the 6 x 6 matrices S(6) [+] acting on the parameter vector
F and defining a reducible representation of O24 are those determined from the
explicit form of the two generators 7, S (see Eq. (4.6)), displayed in Eq. (5.20).
Retrieving from the above generators all the group elements and, in particular,
a representative for each of the conjugacy classes, we can easily compute their
traces and in this way establish the character vector of such a representation.
We get

X[G] = {670a_2a070}' (7.4)

The multiplicity vector is
m[6] ={0,0,0,1,1} (7.5)

implying that the six-dimensional parameter space decomposes into a Dy [Oa4, 3]
plus a D5 [Oa4, 3] representations. Utilizing Eq. (2.24) we find

1
H4[02473] FZE {F1+F27F1+F2)F3+F4)F3+F4)F5+F67F5+F6})
) (7.6)
I1° [024,3] F = 5 {F\ = F, Fy — F\, 5 — Fy, Fy — I3, F5 — Fg, Fg — F5},

which tells us that the two irreducible three-dimensional representations are ob-
tained by identifying pairwise or antipairwise the six coefficients.

Let us now uplift the point group representation to a representation of the
Universal Classifying Group Gisss. As explained in Subsec.5.2, this is done
by including the elements of the quantized translation group Z4 X Z4 X Z4 via
their 6-dimensional representation anticipated in Eq. (5.21). Indeed, as we already
stressed, the representation of G536 obtained from this fundamental orbit can be
regarded as the very definition of the Universal Classifying Group.

What is then this fundamental representation of G536 that we have explicitly
derived from the constructed Beltrami vector field? It is an irreducible, faithful
representation and, from the point of view of the abstract irreps defined by
the method of induction (see Subsecs. 5.3.2 and 5.3.3), it is the representation
Dos3 [G1s36, 6] This is the result mentioned in Appendix C.1 at the top of the list.
In other words, under the action of quantized translations, the two irreducible
representations of the point group described in Eq.(7.6) mix up and coalesce
into an irreducible 6-dimensional representation of Giszs. Our result can be
summarized as the branching rule of the representation Da3 [G1536, 6] with respect
to the point group:

D33 [Gis36,6] = D4 [O24,3] & D5 [Oa4,3]. (7.7

There are, however, other subgroups of the Universal Classifying Group, different
from the point group, with respect to which we can branch the fundamental
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Ds3 [G1s36, 6] representation. Some special choices of such subgroups are at the
origin of the ABC-flows. In the spirit of the Frobenius congruence classes the
most intriguing subgroups H C G536 are those of the space-group-type, namely,
those that contain isomorphic but not conjugate copies of the point group. We
focus, in particular, on the group GFi92, described in Appendix A.7, which
contains the subgroup GSs4, described in Appendix A.9. This latter is isomorphic
to the point group: GSso4 ~ Oay4, yet it is not conjugate to it inside Gis36. This
means that Ay € Giszg such that GSoy = 71 Oo4. We have the following
chain of inclusions:

Gis36 O GF192 D GSo4 (7.8)

that is parallel to the other one:
Giss6 O Giro2 D Oag, (7.9)

G192 being another subgroup, isomorphic to GF192, but not conjugate to it in
Gissg: it is true that Gigo ~ GFig2, yet A7y € Gisge such that GFigo =
~v~1 G192y (see Appendix A.6 for the description of Gig). Since Gigy and
GF192 are isomorphic, they have the same irreps and the same character table.
Yet, since they are not conjugate, the branching rules of the same Gis3¢ irrep
with respect to the former or the latter subgroup can be different. In the case
of the representation Dag [G1536, 6], which is that produced by the fundamental
orbit of order six, we have (see Appendix D)

Ds3 [Gis36, 6] =

Dy [G192,6] = D4 [O24,3] & D5 [O24, 3]
D15[GF 192, 3] ®D15[GF192, 3] = D1[GS24, 1] ®D3[GS24,2] & D4[GSa4, 3],

(7.10)
where in the second line we have used the branching rules
D12 [GF192,3] = D1 [GSa4, 1] @ D3 [GS24, 2], (7.11)
D15 [GF192, 3] = Dy [GS24, 3], (7.12)
that, in view of the isomorphism, are identical with
D15 [G192,3] = D1[024,1] ® D3 [O24, 2], (7.13)
D15 [G1o2,3] = D4 [Oa4, 3] (7.14)

Equation (7.10) has far reaching consequences. While there are no Beltrami vector
fields obtained from this orbit that are invariant with respect to the octahedral
point group Osgy, there exists such an invariant Beltrami flow with respect to
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the isomorphic GSa4: it corresponds to the D; [GSa4,1] irrep in the second
line of (7.10). Furthermore, while the six-parameter space F' is irreducible with
respect to the action of the group Gigo (the irrep Daog [Gige, 6]), it splits into
two three-dimensional subspaces with respect to GF1g9s. This is the origin of the
ABC-flows. Indeed the ABC Beltrami flows can be identified with the irreducible
representation D12 [GF192,3]. Let us see how. Explicitly we have the following
projection operators on the two irreducible representations, Do and D;5:

112 [GF1g9,3] F = {Fy, F>,0, F4,0,0}, (7.15)
%) [GF1g2,3] F = {0,0, F3,0, Fy, Fs} . (7.16)

If we set F5 = F5 = Fg = 0, we kill the irreducible representation D15 [GF192, 3]
and the residual Beltrami vector field, upon the following identifications:

A:Fl; B=F‘47 CZFQ, (717)

coincide with the time honored ABC-flow of Eq.(1.17). Indeed inserting the
special parameter vector F = {A,C, 0, B,0,0} in Eq. (7.2), we obtain

1
v ({x,y,z} +{3,0,-7} {A,C,o,B70,0}) =V (2, y,2), (7.18)

the vector field V(ABS)(z,y, ) being that defined by Eq. (1.17).

The next step is provided by considering the explicit form of the decom-
position of the Dia [GF1g9,3] irrep, i.e., the ABC-flow, into irreducible repre-
sentations of the subgroup GSo4. The two invariant subspaces are immediately
characterized in terms of the parameters A, B, C' as follows:

D1 [GS24,1] & A=B=C#0, (7.19)

7.1.1. The (A, A, A)-Flow Invariant under GSa4. This information suffices

to understand the role of the A : A : A = 1 Beltrami vector field often considered
in the literature. It is the unique one invariant under the order 24 group GSo4

isomorphic to the octahedral point group . Explicitly, in our notations it takes the
following form™:

(cos (2my) + cos (27z))
VAAD () = VIAAD (3 4 2) =24 | (cos (2mz) —sin (272)) | . (7.21)
(sin (2my) — sin (27x))

*Observe that here and in the sequel we stick to our conventions for x,y, z, which differ from
those of Eq.(1.17) by the already mentioned shift {%, 0, —%}).
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This vector field V(444 (z, ¢, 2) is everywhere nonsingular in the fundamental
unit cube (the torus 7°3) apart from eight isolated stagnation points where it
vanishes. They are listed below:

su={g58} 2={s %5}

83:{%’%’% ;84:{%’%’%}; (722)
_f5 5 71. __ 5 7 5. )

s5=1{3.8:8}3 s6 =1{8. 88}

sw={534h m = {358}

A numerical plot of this vector field is displayed in Fig. 6.

Fig. 6. a) A plot of the A : A : A = 1 Beltrami vector field invariant under the group
GS24 and b) a view of its eight stagnation points of Eq. (7.22)

Fig. 7. A plot of 125 streamlines of the
A : A: A = 1 Beltrami vector field with
equally spaced initial conditions. The numeri-
cal solutions are smooth in R®. When a branch
reaches a boundary of the unit cube, it is con-
tinued with its image in the cube modulo the
appropriate lattice translation. The circles in
this figure are the eight stagnation points
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In order to provide the reader with a visual impression of the dynamics of
this flow, in Fig.7 we display a set of 5 X 5 x 5 = 125 streamlines, namely of
numerical integrations of the differential system

dr
= V(AvAvA)(r), (7.23)
with initial conditions
r(0) = ro = {% % %} nias=0,1,2,3,4. (7.24)

7.1.2. Chains of Subgroups and the Flows (A, B,0), (4, A,0), and (A,0,0).
In the literature a lot of attention has been given to the special subcases of the
ABC-flows, where one or two of the parameters vanish or two are equal among
themselves and one vanishes. Also these cases can be thoroughly characterized in
group theoretical terms and their special features can be traced back to the hidden
subgroup structure associated with them.

The (A, B,0) Case and Its Associated Chain of Subgroups. When we put C' =
0, we define a two-dimensional subspace of the representation D12 [GF1g2, 3],
which is invariant under some proper subgroup H(*B:0) ¢ GFgy. This group
H®B.0) can be calculated and found to be of order 64, yet we do not dwell
on it because the subgroup of the classifying group Gisszs, which leaves the
subspace (4, 0,0, B,0,0) invariant, is larger than H(A:B:0) and it is not contained
in GFjg2. It has order 128 and we name it Gg‘géB’O). This short discussion is
important because it implies the following: the flows (A, B,0) should not be
considered just as a particular case of the ABC-flows rather as a different set of

flows, whose properties are encoded in the group Gg‘géB’O).

The group GggéB’O) is solvable and a chain of normal subgroups can be found,

all of index 2 which ends with the Abelian GiA’B’O) isomorphic to Z4. This latter
is nothing else than the group of quantized translation in the y-direction and its
inclusion in the group leaving the space (A, 0,0, B,0,0) invariant actually means
that the differential system must be y-independent and hence two-dimensional.
The chain of normal subgroups is displayed here below:

A,B,0 A,B,0 A,B,0
A,B,0 A,B,0 A,B,0 <]G<(32 )<]Gé4 )<]G528 )
Zs ~ GPPO q GVPO g Gl ’)<<

aaip™?
(7.25)
and it allows for the construction of irreducible representations of Gg‘géB’O) and

all other members of the chain, by means of the induction algorithm. Such
a construction we have not done, but all the groups of the chain are listed
with their conjugacy classes in Appendix E. The group G(ééB’O) leaves the
subspace (4, 0,0, B, 0,0) invariant but still mixes the parameters A and B among
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themselves. The subgroup GEQ’B’O) < GggéB’O) instead stabilizes the very vector

(4,0,0,B,0,0). This means that any (A, B,0)-flow has a hidden symmetry of

order 16 provided by the group G(116§7B,0)

fields is the following one:

. The general form of these Beltrami

Acos (272)
VABO(p) = VABO (3 4 2) = | Beos(2rz) — Asin (2m2) | . (7.26)
—Bsin (27z)

Looking at Eq.(7.25), we notice that there is another group of order 32,
namely Ggg’A’O) which contains GYQ’B’O), but it is not contained neither in
Gg‘géB’O) nor in GF195. This group is the stabilizer of the vector (A, 0,0, A,0,0)
and hence it is the hidden symmetry group of the flows of type (A, A,0). Once
again the very fact that Ggg’A’O) is not contained in GggéB’o) shows that the
(A, A,0)-flow should not be considered as a particular case of the (4, B,0)-
flows rather as a new type of its own. Let us also stress the difference with the
case of the (A, A, A)-flow. Here the hidden symmetry group GSo4 is contained
in GF192 and the interpretation of the (A, A, A)-flow as a particular case of the
(A, B, C)-flows is permitted. Having set

cos (27z)
VAL () = VA (g y 2y = A | cos(2mz) —sin (272) |, (7.27)

—sin (27x)

in Fig.8, we display a plot of the vector field V(4:4:0)(r) and a family of its
streamlines. In the case of this flow, there are not isolated stagnation points,
rather, because of the y-independence of the Beltrami vector field, there are two
entire stagnation lines explicitly given below:

1 3 1
511{57:%1}’ sl = {1’y71} (7.28)

Let us finally come to the case of the flow (A4,0,0). The one-dimensional
subspace of vectors of the form (A,0,0,0,0,0) is left-invariant by a rather big
subgroup of the classifying group which is of order 256. We name it Gé/;éo’o),
and its description is given in Appendix E. It is a solvable group with a chain of
normal subgroups of index 2 which ends into a subgroup of order 16 isomorphic

to Z4 X Z4. This information is summarized in the equation below:

Za x Za~ Gig V< G5 "< GE 00«
(A,0,0) (A,0,0)
0 Gigg ' < Gygg

Ty~ GELA7B’O)<] GéA7B’O)<] Ggg’B7O)< Gég,370)<] Géin,O) C
(7.29)
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Fig. 8. a) A plot of the Betrami vector field VA4 (r), where the two stagnation lines
of the flow are visible (fat lines). b) A family of streamlines with equally spaced initial
conditions is displayed

The group Gg;éo’o) leaves the subspace (4, 0,0, 0,0,0) invariant but occasionally

changes the sign of A. The subgroup Gg‘géo’o) C Gg‘éﬁ’o’o) stabilizes the very
vector (A,0,0,0,0,0) and therefore it is the hidden symmetry of the (A4,0,0)

flows encoded in the planar vector field

cos (27z)
VA0 () = VAL (4 gy )= A | —sin(2m2) |- (7.30)

Fig. 9. a) A plot of the Betrami vector field V%% (r). b) A family of streamlines with
equally spaced initial conditions is displayed. The planar structure of the streamlines is
quite visible
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Looking back at Eq.(7.29) it is important to note that the group G%éo’(” #+

GggéB’O) is different from the homologous group appearing in the group-chain

of the (A, B,0)-flows. So, once again the (A, 0,0)-flows cannot be regarded as

)

particular cases of the (A, B, 0)-flows. Yet, the group Gg‘géo’o contains the entire

(A,B,0) ,0)

chain of normal subgroups Gjy3 starting from Gé‘:’B . There is however

a very relevant proviso that ng’B’O) is a subgroup of ng;éo,o)’ but it is not
normal. In Fig.9, we show a plot of the vector field V(4:0:0)(r) and a family of
its streamlines.

7.2. The Lowest-Lying Octahedral Orbit of Length 12 in the Cubic Lattice
and the Beltrami Flows Respectively Invariant under GPo, and GKo4. The
next example that we consider corresponds to the length 12 octahedral orbit of
momentum vectors in the class numbered 9) in our list of 48 classes, namely:

k={0,1+4v,1+4v}. (7.31)

Choosing the representative v = 0, we obtain the following lowest-lying orbit of
12 points:

p1=1{-1,-1,0}; pr={0,1,-1}

pe=1{-1,0,—-1}); ps={0,1,1}

p3=1{-1,0,1};  po={1,-1,0}; (7.32)
pa={-1,1,0};  pio={1,0,-1};

Pbs = {07 -1, _1}; P11 = {170’ 1};

pe =1{0,-1,1};  p12 ={1,1,0}.

These are the lattice points displayed in Fig. 10.

Fig. 10. A view of the octahedral 12-orbit in
the cubic lattice, corresponding to the mid-
points of the edges of a regular cube
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Applying the strategy of sum over lattice points that belong to a point group
orbit, we obtain the following 12-parameter vector field:

VO ((F) = {V;, Vy, Vo),
Ve = 2cos (200¢) F1 + 2 cos (2m05) Fa + 2 cos (2m04) F3—
— V25sin (2103) F; + V25in (2r05) Fy — 2 cos (210, Fs—
— 2v/25in (210¢) Fy — 2v/2sin (2705) Fs + V2sin (270,4) Fy+
+ 2cos (2103) Fig — 2 cos (2m03) Fi; — V2sin (2101) Fia,
V, = V2sin (2704) Fi — V/2sin (2m05) Fa+ 2 cos (2m0,) Fi+
+2cos (2703) Fy + 2 cos (2m02) F5 + 2 cos (2mO1) Fs+
+ 2cos (27O¢) Fr — 2 cos (27O5) Fy + V2sin (270O4) Fo+  (7.33)
+2v/2sin (2m03) Fio + 2V2sin (2702) Fi1+
—V2sin (2704) Fia,
V., = V/2sin (2m0¢) F1 + V2sin (2705) Fy — 2v/2sin (2m0y4) F5—
—V25sin (21003) F; — V25in (2r05) Fy — 2v/2sin (2701) Fs+
+ 2cos (270O¢) F7 + 2 cos (2m05) Fg + 2 cos (2mO4) Fo+
+2c0s (2103) Fip + 2 cos (2103) Fi1 + 2cos (2101) Fia,

where F; (i = 1,...,12) are real numbers, and the angles ©; are defined as
follows:

01 =z+y; O =z + z; O3 =1z —z;
(7.34)
Oy=2z—y; Os =y + z; O =y — 2.

Decomposition of This Orbit with Respect to the Point Group Q4. The action
of the octahedral point group Os4 is easily determined on such a vector field by
the standard procedure illustrated above. The form of the two Oo4 generators is
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displayed below

0

0
0

1
0

0 000 O0OO0OTO0O
0 000 0 0 O00O
0 000 0 0 O0@O
100 0 0 0 0O
010000 O0O0
0 000 0 0 O00O
001 00O0O0O0

0 000O0OT1TUO0OF®O

0
0

0 0
0 0
0 0

0

-1

0
0
0

0
0
0

0
0

0001 0O0O0O0

0

1

0 000 0O
0 000 0 OO

-1 0 0 O

0 0

0

00001000

(7.35)

0

0 000 1FO0

0 001060

0 01 0 0O
01 00 0O

0

100 0 0O

0 000 OO
0 000 0O
0 000 O0°FO
0 000 O0°PO
0 000 OO

0
0

-1

Retrieving from the above generators all the group elements and, in particular, a

representative for each of the conjugacy classes, we easily compute the character

vector of this representation. Explicitly we get

(7.36)

x[12] = {12,0,0, -2,0}.

The multiplicity vector is

(7.37)

m[12] = {0,1,1,2,1}.
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This implies that we have a one-dimensional nonsinglet representation Dy [O24, 1],
a two-dimensional representation D3 [O24, 2], two three-dimensional representa-
tions Dy [O24, 3] and one three-dimensional representation D5 [Oa4, 3.

The splitting of the parameter space into these five invariant subspaces re-
quires a little bit of algebraic work that we omit, quoting only the result.

We name A the coefficient corresponding to the one-dimensional Dy repre-
sentation; I'y o, the two coefficients corresponding to the two-dimensional D3 rep-
resentation; K o 3, the three coefficients corresponding to the three-dimensional
Dy, representation; A; o3, the three coefficients corresponding to the three-
dimensional Dy representation; and A, 2 3, the three coefficients corresponding
to the three-dimensional Dy representation. Expressed in terms of these variables,
the parameter vector F has the following form:

—A+Ky+T'1 471
A+ Ky —T1—T9
A1+ Az + A+ A
—A+ K3 —T4
A+ K3 +14

F— —A1+ A+ A1+ As . (7.38)
—A1+ Ay + A3 —A1 — Ay — Az
A+ M

—A+ K —T5

Az + A3

Ao+ Ay

A+ K +T9

In Eq.(7.38), the decomposition into Oy irreducible representations is fully
encoded.

Uplifting to the Universal Classifying Group Gis36. As in all other cases this
reducible representation of the point group can be uplifted to a representation of
the entire classifying group Gis3e including the representation of the translation
generators which is calculated to be that displayed in Eq. (F.1) (see Appendix F.1).
The result of this uplifting is that the 12-parameter vector field (7.33) corresponds
to an irreducible 12-dimensional representation of the classifying group, precisely
to D3a [G1s36, 12], and the previous results correspond to the following branching
rule:

D39 [G1s36,12] = D2 [Og4, 1]+ D3 [O24,2] +2D4 [O24, 3]+ D5 [O24, 3] . (7.39)

It is interesting to consider the branching rule of the same representation with
respect to the two subgroups Gigo C Gisze and GF192 C Gisge that, as we
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have shown in the previous section, play such an important role in understanding
the ABC-flows and their hidden symmetries.

Decomposition of the Orbit with Respect to the Groups Gios and GFigs.
With the help of the character tables we easily obtain

D33 [Gis36, 12] = Dy [G1g2, 3] + D13 [Gig2, 3] + D19 [G192, 6] (7.40)
and
D39 [Gis36,12] = D9 [GF192, 3] + D13 [GF192, 3] + D19 [GF192,6].  (7.41)

This result is very interesting. The decomposition of the irreducible representation
D33 [G1s36, 12] with respect to the two isomorphic but not conjugate subgroups
G192 and GF1go is identical. It follows that it is identical also with respect to
any of their homologous subgroups. However, the G192 and GFigo invariant
subspaces are far from being the same, and the corresponding Beltrami vector
fields are different. In the case of the group G192, which contains the point group
as a subgroup Og4 C Giga, the three representations Dg [G192, 3], D13 [G1g2, 3],
and D19 [G1g2,6] simply join together the point group representations in the
following way:

Dy [G192,3] = D4q [O24, 3],
D13 [G192,3] = D2 [O24,1] @ D3 [024, 2], (7.42)
D19 [G192,6] = Dap [O24, 3] & D5 [O24, 3] .

In the case of the group GFig2, the invariant subspaces mix the point group
representations in a capricious way and the right-hand side of Egs. (7.42) is not
true if in the left-hand side we replace Gig2 with GF192. Yet, if we consistently
replace Oo4 with its homologous GSo4 also in the right-hand side, then we obtain
a true set of equations

Dy [GF 192, 3] = Dy, [GS24, 3],
D13 [GF192, 3] = D2 [GS24, 1] @ D3 [GS24,2], (7.43)
D19 [GF192, 6] = D4b [G824a 3] S D5 [GSQ47 3] .

Observing Eqs. (7.42) and (7.43), we conclude that from the 12-parameter vector
field (7.33) we cannot extract any one that is invariant under either Og4 or GSoy
since no D; representation emerges. This implies that from this orbit we cannot
extract any Beltrami vector field with a hidden symmetry isomorphic to that of
the proper octahedral group Og4 ~ Sy4. Yet there is another abstract group of
order 24 which has isomorphic subgroup copies in Gigo and GFjg2. This is
the abstarct group A4 ® Zs, and it happens to be the group number 13 in the
list of the 15 groups of order 24 (see [25]). It is the unique group of such an
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order that has 8 conjugacy classes: its not conjugate copies in the classifying
group were respectively named by us GPoy C Gigz and GKoy C GFig2 (see
Appendices A.10 and A.11 for their description). As we show in the next
subsection, there are Beltrami vector fields that have hidden symmetry either
GP24 or GK24.

7.2.1. Beltrami Flows Invariant with Respect to the Subgroups GPoy and
GKoy4. As stated above, the subgroups GPoy C Gigo C Gisge and GKoy C
GF192 C Gis3¢ are isomorphic among themselves and to the abstract group
A4 ® Zy. This latter, which has order 24, can be defined by the following
generators and relations:

A4®ZQE(T,7D|76:e,P2:e,(77-T)2:e). (7.44)
In the case of GPy4, we have
T ={2s,1,1,1}; P ={3;,1,0,0} (7.45)

and the resulting group is that described in Sec. A.10.
In the case of GKs4, we have instead

13
72{21755550}; P:{33517150}7 (7.46)

and the resulting group is that described in Sec. A.11.

We consider next the decomposition of the irreducible representations Dy,
D13 and Dqg of either Gygo or GF192 with respect to either GP24 or GKo4 and
we get

Dy [G192, 3] =D [GP24, 1] ® Do [GP24, 1] ® D3 [GP24, ].] ,
D13 [Gig2,3] = D74 [GPa4, 3], (7.47)
D19 [Gi92,6] = D7y [GP24, 3] @ D7 [GPa4, 3]

and

Dy [GF192,3] = D1 [GKay, 1] ® D2 [GKaq4, 1] ® D3 [GKag, 1],
D13 [GF192,3] = D7, [GKa4, 3], (7.48)
D19 [GF1927 6] = D7b [GK24a 3] D D7C [GK247 3] .

This implies that there are both the Beltrami vector field invariant under GPoy4
and another one invariant under GKoy.

The Beltrami Vector Field Invariant under GP24. Applying to the vector
field of Eq.(7.33) the projector onto the singlet representation D; [GPaq4, 1], we
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obtain the following Beltrami vector field:

V(PP (r) — (v, V,, V2 },
V, = cos (2m(y — 2)) 4 2 cos (27 (y + 2)) 4+ V2sin (27 (z — y))—
—V2sin (2n(z + y)) — V2sin (27 (z — 2)) + V2sin (27 (z + 2)),
V, = 2cos (2m(x — 2)) + 2cos (2n(z + 2)) + V2sin (27(x — y))+  (7.49)
+V2sin (27(z + ) + V2sin (27(y — 2)) — V2sin (27 (y + 2)),
V. = 2cos (2m(z — y)) + 2 cos (2m(z + y)) — V2sin (2n(z — 2))+
+V2sin (27 (y — 2)) — V2sin (27 (x + 2)) + V2sin (27 (y + 2)).

In the unit cube this vector field has 26 stagnation points:

V(GP24|D1)(Si)7 1=1,...,26,

L4
»

LPL
%
/
7
!

t

)
\
N

r e
St

Fig. 11. a) A plot of the GP24 invariant Beltrami vector field V(GP2¢/P1) (v} obtained
from the octahedral 12-point orbit in the cubic lattice (midpoints of the edges of a regular
cube). The field is analytically defined in Eq.(7.49). b) A family of streamlines of this

vector field with equally spaced initial conditions. In both pictures the circles denote the
26 isolated stagnation points of this flow
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S1 :{0

whose coordinates are explicitly given below:

1t —{0,4,1 ss =1{1.0,4};
s1 = {5:3.0}; bt s ={ia )
s ={b il s —{Lial} so = {131}
sw={111}; 1‘*{171az}» siz={1. 1,1}
IR 1,330 s15=1{3,0,3}; (7.51)
816—{%&,% sir={34.3}5 sis={3,4.3);
519 = ;1’4’0} {474’4 %7%7%
DAY 23*{1@1}, 24:{3,1,3

sos ={1,%,1};

26 — {L%v%}

A plot of this vector field and of a family of its streamlines is shown in Fig. 11.

The Beltrami Vector Field Invariant under GKo4. Applying to the vector
field of Eq.(7.33) the projector onto the singlet representation Dq [GKaq, 1], we
obtain the following Beltrami vector field:

V(GKM‘Dl)(r) = {Vza Vyv sz}a
Ve =2cos (2m(x — y)) + 2cos (27 (z + y)) + sin (27 (x — 2))—
— 2v2sin (27 (y — 2)) — sin (27 (x + 2)) — 2v/2sin (27 (y + 2)),

V,, = 2cos (27 (x — y)) — 2cos (27 (x + ) — V2cos 27 (x — 2))—  (7.52)
2cos (2m(x 4 z)) + 4sin (27y) sin (27 z),
V. =2cos (2m(y — 2)) + 2cos (2m(y + 2)) — 2v/2sin (27 (z — y))+
+ 2v/2sin (27(z + y)) + sin (27(z — 2)) + sin (27 (x + 2)).
This vector field has 16 stagnation points
V(KD (g i =1,...,16, (7.53)
whose coordinates are explicitly given below:
1 . _ 31. _ {31 1Y.
S1 :{1507%}7 52 _{%7051 ; 83 _{17171}7
_f11 1Y. _ 11 3. _ 31 1.
so ={hniti s ={533} s ={3 3.3}
_f1q 1. _[3 1 1.
s ={nLati s ={5 L4} o ={h 13} (7.54)
_ {3 31. _[3 1 1Y. :
510—{@ vz}v ={ 03t se={3 13}
31 1.
={131h ={&di s ={8 11}

S16 = {Zalv 1

A plot of this vector field and of a family of its streamlines is shown in Fig. 12.
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Fig. 12. a) A plot of the GKay4 invariant Beltrami vector field V(G¥241P1 () obtained
from the octahedral 12-point orbit in the cubic lattice (midpoints of the edges of a regular
cube). The field is analytically defined in Eq.(7.52). b) A family of streamlines of this
vector field with equally spaced initial conditions. In both pictures the circles denote the
16 isolated stagnation points of this flow

As is made manifest by the difference in the number of stagnation points and
as can be visually appreciated by comparing Figs. 11 and 12, although their invari-
ance groups are isomorphic, the Beltrami fields V(GF241P1) (r) and V(GK24[D1) (1)
are genuinely different. This is an important lesson to be remembered. The com-
plete classification of all invariant Beltrami vector fields requires a complete
classification of all subgroups of Gis36 up to conjugation and not simply up to
isomorphism. Furthermore, for all such subgroups one needs to find all singlet
representations Dj.

7.3. The Lowest-Lying Octahedral Orbit of Length 8 in the Cubic Lattice.
The next case we consider is the class of momentum vectors number 5 in our list
of 48, namely:

k={1+4p, 1 +4p, 1 +4u}. (7.55)

If we choose the lowest-lying representative of the class (1 = 0), we obtain the
following octahedral orbit of 8 points:

pr={-1,-1,-1}; ps ={1,-1,-1};
pe={-1,-11}; pe={1,-11}
ps={-11,-1}; pr={L1,-1}
pa={-1,1,1}  ps={1,1,1}.

These 8 points are the vertices of a regular cube inscribed in the sphere of radius
r?2 = 3, as is displayed in Fig. 13.

(7.56)
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Fig. 13. A view of the octahedral 12-orbit
in the cubic lattice, corresponding to the
midpoints of the edges of a regular cube

Applying the strategy of sum-over-lattice points that belong to a point group
orbit, we obtain the following 8-parameter vector field:

VO (x[F) = {V,, Vi, V},
v, — ;(ﬁ sin (2704 (F5 — Fy) + 3 cos (2704) (Fy + F5) +
+ 3 cos (2103) (Fy — Fg) + V/3sin (2703) (Fy + Fs) +
+ 3cos (2103) (Fr — F3) — V/3sin (2104) (F3 + Fr) +
+/3sin (270, (Fy — Fy) — 3cos (2701) (Fy + Fy) )

(
(

Vy = ; (3 cos (2m04) Fy + 3 cos (2mO3) Fy + 3 cos (2mO3) F3+ (7.57)
+3c0s (2101) Fy + V3sin (2704) (Fy + 2F5) —
— V/35in (2703) (Fy — 2F) — V/3sin (210,) (F3 — 2F;) +
+V/3sin (270, (Fy + 2F%) )
V. = %( — V/3sin (270,) (2F) + Fs) + v/3sin (2703) (Fs — 2F) +
+V/3sin (2705 (Fy — 2F3) — V/3sin (2701) (2Fy + Fy) +
+ 3 (cos (2mO4) F5 + cos (2mO3) Fg + cos (2102) Fr+
+ cos (2704) Fs) ) )
where F; (i = 1,...,8) are real numbers, and the angles O; are the following
ones:

Or=r4+y+2,0=04+y—2,03=x—y+2,60,=x—y—=2. (7.58)
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The action of the octahedral group Os4 is easily determined on such a vector
field. We have

¥Vy€Ou: 7 VO (y.x[F) =V® (rl RO - F) : (7.59)

where, as before, v are the 3 x 3 matrices of the fundamental defining represen-
tation, while 92(®)[y] are 8 x 8 matrices acting on the parameter vector F that
defines a reducible representation of Oo4. The matrix representation of the two
generators (4.6) is explicitly given by

00 -10 0 1
100 10 0
010 0 0 -100
mOr—| 000 “Loo 0 -1}
001 0 00 00
100 0 00 00
010 0 00 00
000 1 00 00
(7.60)
10 0o 1 0 0
0 1 0 0 -10
000 —-10 0 0 -1
mog | 00 10 0 0 1
000 0 -10 0
000 0 0 -10
000 0 0 0 0 -1
000 0 0 0 -10

Retrieving from the above generators all the group elements and, in particular, a
representative for each of the conjugacy classes, we easily compute the character
vector of this representation. Explicitly we get

x[8] = {8,-1,0,0,0}. (7.61)
The multiplicity vector is
m [8] = {0,0,1,1,1}, (7.62)

implying that the eight-dimensional parameter space decomposes into
a D3 [024,2], plus a Dy [Oa4, 3], plus a D5 [O24, 3] representation.
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Uplifting to the Universal Classifying Group. As in all the other cases, shift-
ing the coordinate vector r by means of the constant vector % n=— %{nl , N2, N3 }
induces a rotation on the parameter-vector

V) <r + i n|F> — VO (x| M F). (7.63)

The explicit form of the matrix My, is given in Appendix F (see Eq. (F.2)). This
information is sufficient to complete the uplifting of the 8-dimensional represen-
tation of the point group to a representation of the Universal Classifying Group
Gi536. It turns out that with respect to this latter, the 8-dimensional representa-
tion is an irreducible one, precisely the Dsg [G1536,8]. The previous results are
summarized in the following branching rule:

D30 [Gis36,8] = D3[024,2] ® Dy [O24,3] @ D5 [Og4, 3] . (7.64)

As it happened for the orbit of length 12, the branching rule (7.64) is uplifted to
the subgroup Gigo:

D30 [Gis36, 8] = D1g [Gig2, 2] @ D5 [Gigz2, 3] @ Ds [Gig2, 3], (7.65)
since we have
D1g (G192, 2] = D3 [024,2],
D5 [G192,3] = Dy [O24, 3], (7.66)
Dg [G192,3] = D5 [024,3] .

Utilizing our character tables, we also verify that the decomposition of the rep-
resentation Dsg [G1s36, 8], with respect to the group GFigs, is identical to its
decomposition with respect to the isomorphic (but not conjugate) group Gigo,
namely:

D3 [G1s36, 8] = D1s [GF192,2] @ D5 [GF192, 3] ® Dg [GF192, 3], (7.67)
and we obviously have
D15 [GF192,2] = D3 [GSa4,2],
D5 [GF192,3] = D4 [GSa4, 3], (7.68)
Dg [GF192, 3] = D5 [GSa4, 3] .

From the above decompositions it appears that from the 8-parameter vector
field (7.57) no instance can be extracted of the Beltrami vector field that is
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invariant either under O24 or under its homologous GSo4. Similarly by explicit
decomposition (see the branching rules in Appendix D.4) one reaches the conclu-
sion that no singlet D; representation emerges with respect to the groups GPay
or GKo4. There is, however, another pair of isomorphic (but not conjugate) sub-
groups GS32 C Gigo C Giszg and GK3o C GF199 C Gissg, both of order 32,
with respect to which singlet invariant vector fields do exist. They are described
in the next section.

7.3.1. Beltrami Vector Fields with Hidden Symmetry GSss and GKso, Re-
spectively. The subgroups GS3 and GK3o are explicitly described in Secs. A.12
and A.13. Their structure is very simple. They share a normal Abelian subgroup
of order 16, named Gy, which is isomorphic to Z‘Ql:

<1 GS32 C Gig2
ZQXZQXZQXZQNGlﬁ <]<
<1 GKsga C GF192. (7.69)

The branching rules of the G192 representations (7.66) with respect to GSso are
the following ones:

D15 [Gi92,2] = Dy [GS32,1] @ D3 [GS32,1],
D5 [Gig2,3] = D3 [GS32,1] @ Do [GS32, 2], (7.70)
Dg [G192,3] = D4 [GS32,1] @ Dg [GS32, 2],
and we similarly have
D15 [GF192,2] = Dy [GK32,1] ® Dy [GK32,1],
D5 [GF192, 3] = D3 [GK32,1] ® Dy [GK32,2], (7.71)
Dg [GF192,3] = D4 [GK32,1] @ Dg [GK3o,2].

The two identity D, representations appearing in Egs. (7.70) and (7.71) signalize
that from this orbit we can construct the Beltrami vector fields invariant with
respect either to GSso or to GK3s2. Previous experience tells us that they should
be physically different flows although they have isomorphic hidden symmetries.
We construct them in the next two subsections.

The Beltrami Vector Field Invariant under GSso. Performing the projec-
tion onto the D; [GS32, 1] representation, we get the following Beltrami vector
field:

V(@S2 (r) = {V,, V,, V.},

Ve = 8 cos (2mx) sin (27y) sin (272),
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Vy=—cos(2n(x —y—2)) —cos2n(z+y — z)) + cos 2m(z —y + z))+
+cos (2m(z +y + 2)) + V3(—sin 2m(z — y — 2))+ (7.72)
+sin (2n(z +y — 2)) —sin (2n(z —y + 2)) + sin 27 (x + y + 2))),

V,=—cos(2m(x —y —2)) +cos 2m(x +y — 2)) —cos 2m(z —y + 2))+
+cos (2m(z +y + 2)) + V3(sin 27 (z —y — 2))+
+sin(2r(z4+y—2)) —sin(2r(x —y + 2)) —sin 27(x + y + 2))).

The vector field (7.72) has 53 stagnation points in the unit cube:

V(GSelDU gy G =1,...,53, (7.73)
whose explicit form is given here below

s1 =1{0,0,0}; s2 ={0,0,5}; s3 ={5,0,3};
s1 =4{0,5.0}; 55 ={0,5,5}5 s ={5,0,3};
st ={0,1,0}; ss =1{0,1,1}; s ={1,0,1};
si0=19%,0,0}; s11=1{3,0,1}; sio={%01};
s13= {1,711} 115} s15={1,0,%};
si6 = {1330 st =113 1} sis=1{5.03}:
519 D59 s20=1{3,1,0}; s21={§,0,5};
szzz{i,l,l}; 823:{%,0 0}' 524:{i,0,%};

so5 = {3,0,1}; s26 = {3,3,0}; sor ={1,0,1}; (7.74)
sos = {331} s20 = {5, 1,0}3 s30 = {,0,3};
ss1 = {3,1,1}; ss2={2,0,0}; s33={%,0,1};
ssa={2,0,1}; s35={2,2,1}; s36={2.0,1};
ssr={2,3,0}; sss={2,3,3}; ss0=1{1,0,1};
T sa 3.33%: s =1{1,0,3};
si3={2,1,3}; saa={2,1,1}; s45={5.0,1};
sie = {1,0,3}; sar={1,0,1}; saus={5,0,1};
s10={1,3,5}5 ss0 = {1,3,1}5 ss1 = {5,0,3}

A plot of this vector field with a family of its streamlines is displayed in

Fig. 14.
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Fig. 14. a) A plot of the vector field V(©532)(r) defined in Eq.(7.72) which is invariant
under the group GS32. b) A family of streamlines of such a flow is displayed. As in the
previous figures the circles denote the 53 stagnation points

The Beltrami Vector Field Invariant under GK3so. Performing the projection
onto the Dy [GK3so, 1] representation, we get the following Beltrami vector field:

VIEKR) (1) = {V,, V,,, Vo),

Ve = (=9 + V3) cos 2n(z — y — 2)) — (=9 + V/3) cos 2n(z +y — 2))—

— (=94 V3) cos 2m(x — y + 2)) + (=9 + V/3) cos (27 (z + y + 2))—

- %(15 + 7V3)(sin (27 (z — y — 2))+

+sin(2n(z+y—2)) +sin(2r(z —y + 2)) +sin 2 (z + y + 2))),
Vy = (=14 3V3)cos (27m(x —y — 2)) + (=1 + 3v3) cos (2m(z +y — 2))+

+ (1 = 3V3) cos 2m(z —y + 2)) + (1 — 3v/3) cos (2m(x + y + 2))+

+ %(3 +17V3)(—sin (27(z — y — 2))+ (7.75)

+sin(2n(z+y —2)) —sin2r(r —y + 2)) +sin 2n(x + y + 2))),
Vv, = ;( —3(4+V3)cos (2m(x —y — 2)) + 3(4 +V3) cos (2m(z +y — 2))—

—3(4+V3)cos (2m(z —y + 2)) + 3(4 + V3) cos (2m(x + y + 2))+

+ (=6 +5V3)(sin (27(z —y — 2)) +sin 27(z +y — 2))—

— sin (27(x — y + 2)) — sin 27 (x + y + z))))
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Fig. 15. a) A plot of the vector field V(G%32)(r) defined in Eq.(7.75) which is invariant
under the group GKaz. b) A family of streamlines of such a flow is displayed. The circles
denote the 35 stagnation points of this flow

This vector field has 35 stagnation points, namely, all those listed in Eq.( 7.74)
with the exception of the 18 listed below:

not stagnation = {310, S11, 512, S15, S16, 517,
520, 521, 522, 32, 533, $34, 537, 538, 539, 542, S43, 544 }.  (7.76)
A plot of this vector field with a family of its streamlines is displayed in Fig. 15
7.4. Example of an Octahedral Orbit of Length 24 in the Cubic Lattice.

As the last example in the present discussion we consider the case numbered 13
in our list of 48 momentum vector classes, namely:

kK={l+4p 1+4pu,2+4p}. (1.77)

Choosing the lowest-lying representative in the class (4 = p = 0), we obtain the
octahedral point orbit of order 24 listed below:

{_27_17_1}7 {_27_171}7 {_2717_1}7 {_27171}7
{-1,-2,-1}, {-1,-2,1}, {-1,-1,-2}, {-1,-1,2},

0, _ {-1,1,-2}, {-1,1,2}, {-1,2,-1}, {-1,2,1},
1 {1,-2,-1}, {1,-2,1}, {1,-1,-2}, {1,-1,2},
{1,1,-2}, {1,1,2}, {1,2,-1}, {1,2,1},

{2,-1,-1}, {2,-1,1},  {2,1,-1}, {2,1,1}

(7.78)
A geometrical picture of these points in the lattice is displayed in Fig. 16.
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Fig. 16. A view of the considered orbit of length 24 in the cubic lattice: the lattice points
intersect the sphere of radius r> = 6

Starting from the above point orbit, the construction algorithm (3.1) produces
a vector field containing 24 parameters which has the following form:

6
Ve (rF) = D AV (), (7.79)
=1
where
AV (x|F) =

— (Fi2 + Fay) Q1 + (Fas — F11) Qo + (Fio — Fa) Q3 + (Fo + Fo1) Q4
= | 2(Fi2Q + F11Q2 + Fio8Q3 + FyQy) )
2 (Foa + Fo38lo + FooQs + Fo1Q4)

(7.80)
—2(2F3 + F5) Q5 + (2F19 — 4F7) Q—
—2(Fg +2F18) Q7 — 2 (F5— 2F17)Q
AVCY (r|F) = (Fs +2F18) Q7 — 2 (Fs 17) s s
2 (FsQs + F7 Q6 + Fs827 + F5Q%)
2 (F20Q2s5 + F1996 + F15Q7 + F17Qs)
2 (Fy — 2F16) Qo + 2 (F5 + 2F15) Q10+
4F5 — 2F14) Q) 2 (2F; Fi3)Q
AV3(24)(1‘|F) _ + (4F, 14) Q11 + 2 (2F, + Fi3) Q10 . (7.82)

2 (Fyf9 + F3Q10 + FoQ211 + F149)
2 (F16Q9 + F15Q10 + F14Q11 + F13Q12)
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AV (r]F) =

\/g( (Fi2 — Foq) Q13 — (Fi1 + Faz) Q4 + (Fio + Faz2) Q5+
+ (Fo1 — Fy) Q16)

= 7.83
(F124+5F24) Q13— (F11 —5F23)Q14—(F10—5F22)Q15+(Fo+5F21)Q6 » )
V6
—(5F12+F24) 3+ (F23—5F11)Q14+(F22—5F10)Q15—(5F9 +F21)Q6
V6

\/g( (Fs — 2F3) Q7 — (Fr + 2F19) Qs+
+ (2Fs — Fig) Q19 — (2F5 + Fi7) Qa0)
2(2(Fs + Fao) 7 + 2 (Fig — Fr) Qis+
AV e[ — V2@ (Fs + Fao) Qa7 + 2 (Fag — Fr) Qs s
+ (2Fs + 5F15) Qo + (5F17 — 2F5) Q)
\/g( — (5Fg + 2F5) Q17 + (2F19 — 5F7) Q18—

=2 (Fs + Fig) Qug + 2 (Fi7 — F5) Q)

\/g( (2F4 + Fi6) Q21 + (F15 — 2F3) Qa0+
+ (Fp + 2F14) Q23 — (F1 — 2F13) Qa24)

AV(24)( IF) = \/g( (5F16 — 2Fy) Qo1 + (2F3 4+ 5F15) Qoo+ ass)
+2 (Fiq — F2) Qa3 + 2 (F1 + Fi3) Q24)

VEQ(Fio — Fi) Q1 — 2(Fy + Fis) o+

+ (2F14 — 5F2) QQ3 — (5F1 + 2F13) 924)

F; being the 24 real parameters, {2; denoting the 24 periodic basis functions:

Q1 =cos(2m01); Q2 =cos (27O2); N3 =cos(27O3); Q4 = cos (27O4);
Qs = cos (2mOs5); N = cos (206); N7 =cos (27O7); Qg = cos (27Os) ;
Qo = cos (2mOg) ; Q10 = cos (2O10) ; V11 = cos (27O11) ; Q12 = cos (27O12) ;
Q3 =sin (2701) ; Q14 = sin (2702); N5 = sin (2703); N1 = sin (27O4) ;
Q7 = 8in (2705) ; Q15 = sin (2706) ; N19 = sin (27O7); N2 = sin (27Os) ;

( ( (

le = Sil’l (271’@9); QQQ = Sil’l 271’@10) 923 = 51n 27‘&'@11) 924 = sm 271’@12)
(7.86)
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and the 12 independent arguments of the trigonometric functions being those
listed below:

0, =2x+y+z,
Oy =2x+y—2z,
O3 =2x—y+ 2z,
0, =2x—y—z,
O =+ 2y+ z,
O =+ 2y — 2,

(7.87)
07 =x+y+ 2z,
Os =zr+y— 2z,
Oy =1z —y+ 2z,

O=z—y—2z,
11 =z —2y+ z,
@1221)—21]—2:.

7.4.1. Point Group Irreps and Uplifting to the Universal Classifying Group.
As in all previous cases we can easily derive the representation of the point
group Oy and of the quantized translations on the parameter space provided by
24 x 24 matrices. We do not display the explicit form of the generators of Gi536
since they are too large to fit on paper. We just encode the relevant information
in the form of the splitting of the 24-parameter space in irreducible representation
of Gis36 and of its relevant subgroups.

Firstly, we find that the 24-dimensional representation of Gyssg is reducible
and splits as follows:

R1,1,2) [G1s36,24] = D34 [Gis36,12] © D35 [Gis36, 12]. (7.88)

Secondly, we recall from Appendix D the following branching rules with respect
to the subgroups Gig2 and GF1gs:

D10 [G192,3] & D14[Gig2,3] @ Dig[Gigz, 6]

Dy [GF192,3] ® D13 [GF192,3] @ Dig [GF192, 6]
(7.89)
Dy [G192,3] @& Di3[Gig2,3] @ Dig[Gioz, 6]

D3y [Gisse, 12] =

D35 [Gis3e, 12] = .
D1 [GF192,3] & D14 [GF192, 3] ® D19 [GF192, 6]
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Thirdly, we consider the following branching rules of the considered irreps of the
groups Gigz and GF1g2 with respect to their subgroups Og4 and GSoy:

D19 [G1g2,6] = D4 [Oa4,3] ® D5 [O24, 3],
D14 [Gig2,3] = D1 [O24,1] @ D3 [024,2],
D13 [Gig2, 3] = D2 [Oa24,1] @ D3 [Oa4, 2], (7.90)
D10 [G192,3] = D5 [024, 3],
Dy [G1g2,3] = D5 [024, 3],
D19 [GF192, 6] = D4 [GSa4, 3] ® D5 [GSa4, 3],
D14 [GF192,3] = D1 [GSa4, 1] ® D3 [GSa4, 2],
D13 [GF192,3] = D3 [GSa4, 1] ® D3 [GSaq, 2], (7.91)
Do [GF192,3] = D5 [GSa4, 3],
Dy [GF192, 3] = D5 [GSa4, 3] .

From inspection of Egs.(7.90) and (7.91) we conclude that there is a singlet
representation both of the point group Os4 and of its homologous nonconjugate
copy GSo4. Hence from this orbit we can construct the Beltrami vector fields
with Og4 or GSa4 hidden symmetry. This is certainly true, but the situation is
even better. There exists a subgroup named by us Ohys (see Appendix A.8 for
its description), which is isomorphic to the extended octahedral group, and it is
embedded in Gi536 in the following way:

O24 C Ohyg C Gig2 C Gissze- (7.92)

The branching rule of the entire 24-dimensional representation of the classifying
group with respect to Ohysg is the following one:

MR1,1,2) [Gis36,24] = D1 [Ohyg, 1] @ D3 [Ohyg, 1] @ 2 D5 [Ohyg, 2] @
@ 3D; [Oh48, 3] @ 3 Dg [Oh48, 3] . (7.93)

Hence there exists an invariant vector field with respect to the order 48 subgroup
Ohys. This is certainly invariant with respect to all subgroups of the same, in
particular, O24. As we have only one Oy singlet, it means that the unique vector
field invariant under Os4 has actually an enhanced symmetry Ohyg. Further-
more, the isomorphism of Gigo and GFg9o implies that there must exist another
subgroup OKhyg ~ Ohyg also isomorphic to the extended octahedral group and
satisfying the inclusion relations homologous to those displayed in Eq.(7.92),
namely:

GSay € OKhygs € GFi92 C Gissg. (7.94)
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The branching rules in Egs.(7.90) and (7.91) imply that the singlet vector field
with respect to GSa4 is actually invariant with respect to the order 48 group
OKhyg. We have not constructed the vector field invariant with respect to OKhyg
and we just constructed the Ohyg-invariant one.
7.4.2. The Beltrami Flow Invariant under Ohys. Applying the projector onto
the irrep Dq [Ohys, 1], we obtain the following Beltrami vector field:
V(Oh4s|D1)(r) — {Vx, Vy, VZ}7
Ve = 1805 — 18Q¢ — 1807 + 1805 + 189 — 180219 — 180211 + 18012+
+V6( = Q13 — Q14 — Qs — Qg + Q7 + Qs + Qo+
+ Qa0 + Qo1 + Q22 + Qa3 + Q24), (7.95)
Vy = =301 + 309 — 303 + 304 — 65 + 66 + 627 — 6Qg + 69—
—6Q10 — 6911 + 6Q12 + V6(Qs + Qi — Qi5 — Q16 — 47—
— 4g + TQ1g + TQ20 — Q21 — T2 + 4023 + 4Q04),
V, =301 + 302 — 303 — 304 — 6Q5 — 6 + 6827 + 6025 — 629 — 6010+
+6Q11 + 6Q12 + V6(Qu3 — Qg + Qs — Qg + 77—
— g — 4Q19 + 4Q90 — 4Q91 + 48290 + T3 — 7924)-

Fig. 17. a) A plot of the Beltrami vector field V(48120 (r) defined in Eq. (7.95), which is
invariant under the group Ohys isomorphic to the extended octahedral group. b) A family
of streamlines of such a flow is displayed
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A plot of the vector field and a family of its streamlines are displayed in Fig. 17.
Note that this vector field has 35 stagnation points whose coordinates we do
not display for brevity. The stagnation points are as usual denoted by circles
in Fig. 17.

8. THE HEXAGONAL LATTICE AND THE DIHEDRAL GROUP Dg

We come next to a quite short discussion of the hexagonal lattice. In this case
we do not construct the Universal Classifying Group and we limit ourselves to
display some solutions of the Beltrami equation corresponding to the lowest-lying
orbits of the point group of this lattice which is the dihedral group Ds.

Our main purpose is to illustrate, by means of this example, the new features
that appear when the lattice is not self-dual. Since in this section all considered
representations are relative to the point group, we simplify the notation mentioning
the irreps only as Dy, ..., D¢ without writing in square brackets the group.

The Hexagonal Lattice. Ayex and its dual Aj__ are displayed in Figs. 18, 19,
and 20.These lattices are not self-dual and there is a constant metric which is not
diagonal.

The basis vectors of the hexagonal space lattice Ay, are the following ones:

1 3
wi = {1,0,0}; v_\?gz{i,—g,O}; ws = {0,0,1}, 8.1

ARpme e =

Pall
=
Al
T Al
o
1
o
1L ST
7/

\
‘ ;
! J
1
1 |
11
1
—

™ 4
F
L2

s A

Fig. 18. A view of the hexagonal space lattice Apex, seen from above and in a front view
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Fig. 20 (color online). A comparative view of the hexagonal space and momentum
lattices, seen from above and in a front view. The blue points are momentum lattice points
(€ Af.y), while the red points are space lattice points (€ Apex)



CLASSIFICATION OF ARNOLD-BELTRAMI FLOWS 987

which implies that the metric is the following nondiagonal one:

0

= N

uv = (8.2)

e N

o
=l w ©

The basis vectors €* of the dual momentum lattice A¥__ do not coincide with

hex
those of the lattice Apqx. They are the following ones:

1 2 2
gl=J1,—,0b; &=20,——,0p; &=20,0—%. 8.3
e {)\/57 }7 e {7 \/g? }7 e {7)\/5} ( )

The subgroup of the proper rotation group which maps the cubic lattice into itself
is the dihedral group dg whose order is 12. In the next subsection, we recall its
structure.

8.1. The Dihedral Group Ds. Abstractly, the dihedral Dg group is defined
by the following generators and relations:

A B: A°=e B?’=e (BA)’=e (8.4)

Table 3. Conjugacy classes of the dihedral group Ds

(3 11 - {x,y,z}

20 = {5(@E+V3y),5(

A2 = (Je-vE).}(VBr+).5)
)3 (

3= {3 (V3y—2),5(-V32—y),z}
A7 13 = {3(-2-V3), 3 (V3z—y),2}
A 4 = {—z,—y,z2}
5. = {-z,y,-2}
B |5 = {3(@=V3y),3(-V3z—y), 2}
55 = {3(z+V3y),3(V3z—y),—2}
61 = {3(-=—V3By),%(y—V3z), -2}

BA | 62 = {z,—y,—z}
b = {E(Ay-0),t (), -2}




988 FRE P., SORIN A.S.

Table 4. Multiplication table of the dihedral group Ds

11 21 22 31 32 41 51 52 b3 61 62 63

11 |1 29 29 31 32 41 51 52 b3 61 62 63
21121 31 11 41 22 32 63 61 62 51 b2 B3
2212 1 32 21 4 31 61 62 63 52 bz By
31131 41 21 32 11 22 53 51 H2 63 61 62
32 132 22 41 11 31 21 52 53 51 62 63 61
49|41 32 31 22 21 11 62 63 61 53 51 5o
51 | 51 61 63 B2 Bz 62 11 31 32 21 41 29
52 | B2 62 61 Bz H1 63 32 11 31 22 27 4
53 |53 63 62 51 B2 61 31 32 11 41 22 2y
61|61 52 51 62 63 53 22 21 41 11 31 32
62 | 62 53 H2 63 61 51 41 22 21 32 11 3
63 | 63 51 D53 61 62 Do 21 41 22 31 32 11

Explicitly, in three dimensions we can take the following matrix representation
for the generators of Dg:

1 V3 0
B 5 -1 0 0
A=| V3 1 |5 B=|o 10 |- (8.5)
2 2

The group generated by the above generators has 12 elements that can be arranged
into 6 conjugacy classes, as is displayed in Table 3. In this Table, every group ele-
ment is uniquely identified by its action on the three-dimensional vector {z,y, z}.
The multiplication table of the group Dg is shown in Table 4.

8.2. Irreducible Representations of the Dihedral Group D¢ and the Char-
acter Table. The group D¢ has six conjugacy classes. Therefore according to the
theory we expect six irreducible representations that we name D;, i = 1,...,6.
Let us briefly describe them. The first four representations are one-dimensional.

8.2.1. Di: the Identity Representation. The identity representation which
exists for all groups is that one where to each element of Dg we associate the
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number 1

VyeO: Di(y)=1. (8.6)
Obviously, the character of such a representation is

yi={1,1,1,1,1}. (8.7)

8.2.2. Dy: the Second One-Dimensional Representation. The representation
D5 is also one-dimensional. It is constructed as follows:

Vye {e} :Da(y)= L,
Vye {A} :Da(y) = -1
Vy e {A%} : Da(y) = 1, 8.8)
Vye {43} : Day(y) = -1,
Vye {B} :Da(y) = L,
Vv e {BA}: Dy(y) = —1
Clearly the corresponding character vector is the following one:
xe={1,-1,1,—1,1,—1}. (8.9)

Said in another way, this is the representation, where A = —1 and B = 1.

8.2.3. Dg3: the Third One-Dimensional Representation. The representation
Ds is also one-dimensional. It is constructed as follows:

\V’/YE {e} DQ(,Y): 1)
Vye {A} :Daly) = —1
Vye {A%) : D =1,
ved 3} 2() 8.10)
Vy e {43} : Day(y) = -1,
Vye {B} :Da(y)=-1
Vv e {BA}: Dy(y) = 1.
Clearly the corresponding character vector is the following one:
s ={1,-1,1,—-1,-1,1} (8.11)

Said in another way, this is the representation, where A = —1 and B = —1.
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8.2.4. Dy: the Fourth One-Dimensional Representation. The representation
Dy is also one-dimensional. It is constructed as follows:

Vye {e} :Da(y) = L,

Vye {A} : Da(y) = 1,

Vye {A%2) : D =1,
v { 3} 2(7) (8.12)

Vy e {43} : Dy(y) = 1,

Vye {B} : Dy(y) = 1,

V~y e {BA}: Dy(y) = —1.

Clearly, the corresponding character vector is the following one:

xa=1{1,1,1,1,-1,—1}. (8.13)

Said in another way, this is the representation, where A =1 and B = —1.
8.2.5. Ds: the First Two-Dimensional Representation. The representation Dy
is two-dimensional and it corresponds to a homomorphism

Ds : Dg— SL(2,C), (8.14)

which associates to each element of the dihedral group a 2 x 2 complex valued
matrix of determinant one. The homomorphism is completely specified by giving
the two matrices representing the two generators:

iw/3 0 0 1
D5(A)—<§ s >; D5(B)—<1 0>. (8.15)

The character vector of Dj is easily calculated from the above information and
we have
xs ={2,1, -1, =2, 0, 0}. (8.16)

8.2.6. Dg: the Second Two-Dimensional Representation. The representation
Dg is also two-dimensional and it corresponds to a homomorphism

D6 : D6 — SL(2,(C), (817)

which associates to each element of the dihedral group a 2 x 2 complex valued
matrix of determinant one. The homomorphism is completely specified by giving
the two matrices representing the two generators:

/30 0 1
Ds(A) = ( 0 s ); Dg(B) = ( Lo ) (8.18)
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The character vector of Dg is easily calculated from the above information, and
we have
xs = {2, -1, —1, 2, 0, 0}. (8.19)

The character table of the Dg group is summarized in Table 5.

Table 5. The character table of the dihedral group Ds

Class | ey (a2 {422) {431} {B,3} {BA,3}
Irrep
Dy, xi= 1 1 1 1 1 1
Dy, X2 = 1 —1 1 -1 1 —1
Ds, xs= 1 ~1 1 -1 -1 1
Dy, Xa= 1 1 1 1 -1 —1
Ds, X5 = 2 1 ~1 —2 0 0
Ds, xo = 2 -1 -1 2 0 0

8.3. Spherical Layers in the Hexagonal Lattice and Dg Orbits. Let us now
analyze the action of the dihedral group Dg on the hexagonal lattice. Just as in the
case of the cubic lattice, we define the orbits as the sets of vectors k € A}, that
can be mapped one into the other by the action of some element of the group Ds:

ki €O and ko€ O = 3Jye€Ds /v ki =ko. (8.20)

The hexagonal lattice displays a more variegated bestiary of orbit types with
respect to the case of the cubic lattice. There are orbits of length 2, 6, and 12,
but those of length 6 and 12 appear in a few different types.

Orbits of Length 2. Each of these orbits is of the following form:

ng{ {o,o,—%}, {o,o,%} } (8.21)

where r € Z is any integer number.
Type-One Orbits of Length 6. Each of these orbits is of the following form:

05" = {{o-2 0} {050}, {-r- 0} {-n 5.0} {r- 250} {”’%’0%8}2’2)

where p € Z is any integer number.
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Type-Two Orbits of Length 6. Each of these orbits is of the following form:

O = { (20,00}, {-p.—V3p.0}, {-p.V3p.0}, {p.—v3p,0}, {pV30.0}, {20,0,0} },
(8.23)
where p € Z is any integer number.
Type-One Orbits of Length 12. Each of these orbits is of the following form:

(rmsgiol. {nigea). i), {pasieo)
0512) = {pfq —B2te 0} {p q, f ,0} { q, 2p = } { q } , (8.24)
o500k {ass o}, {an- 20}, {s-psito)
where p,q € Z and q # +p and q # 2 p.
Type-Two Orbits of Length 12. Each of these orbits is of the following form:

{-posnn) {natfe) fpomi-g) (i)

O = | {ro-tr.2} ot {atizok) fasm) {
{f ) (i) foner ) foens )

(8.25)

where p,q,r € Z and ¢ # £p and q # 2 p.
Type-Three Orbits of Length 12. Each of these orbits is of the following
form:

\ {o-%-% {O*Q 2*'} {o.%-%) {o%
0 =3 {»-%- f}{”’ b {-»Hm-%h {p% }
r—%-%) {r- ff} {pg&-2%) {» %ﬂ}

where p, q € Z are two arbitrary integer numbers.
Type-Four Orbits of Length 12. Each of these orbits is of the following form:

(omo-zh (o) {novon-3). (oovons),
OS’ = {fp,ﬁp,fi—%},{ p,\/_p,ﬁ}, {p, V3p,— \/—}, {p, \/_p,ﬁ}, )

{p,\/gp,—%}, {p\/gPQ_\/TE ) {21)0—7 {2[),0,27%}7
(8.27)

where p,q € Z are two arbitrary integer numbers. As we see, the shorter orbit of
length 2 is actually vertical, namely, the associated Beltrami flows correspond to
decoupled systems where only the coordinate z(¢) obeys a nonlinear differential
equation. The other two coordinates form a free system. Similarly, the orbits
of length 6 and the first orbit of length 12 are all planar. In the corresponding
Beltrami flow there is no dependence on the coordinate z which forms a free
system. Presumably all the Beltrami flows of this type are integrable. Only
the maximal orbits of length 12 of type two, three, and four are truly three-
dimensional and give rise to systems that might develop a chaos.
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Table 6. Spherical layers in the hexagonal momentum lattice

r2 | Number of points | Dihedral Ds group point orbits
0 1 {1}

3 8 {6 @2}

g 12 {12}

4 6 {6}

16 20 {1206 @ 2}

2 24 {12 @12}

= 24 {12®12}

=2 36 {120 12® 12}
12 8 {6 @2}

2 24 {1212}

4 24 {1212}

16 18 {6 @12}

&2 48 {120 120120 12}
£ 24 {12®12}

o 36 {120 12® 12}
& 24 {12®12}

24 12 {12}

In Table 6, we have displayed the counting of lattice points on the first
lying spherical layers of the hexagonal lattice and their splitting into orbits of
the dihedral group Dg. In the next section, we consider the construction of the
Beltrami flows associated with the first few of such layers.

9. BELTRAMI FIELDS FROM SPHERICAL LAYERS IN THE
HEXAGONAL LATTICE

In this section, as announced, by utilizing the algorithm outlined in Sub-
sec.3.1 we construct the Arnold-like Beltrami flows associated with the first
low-lying spherical layers of the hexagonal lattice.
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9.1. The Lowest-Lying Layer of Length 8 in the Hexagonal Lattice A}

hex*
In Fig.21, we show the location of the momentum lattice points forming the

lowest-lying spherical layer of length 8. Under the action of the dihedral group
Dg these eight points are split into a 6-orbit of type one and a 2-orbit:

05 = {{-1-%0} {-1.35.0} {o-Fo} {0z} {10} {150}, OD
Oy = { {0,0,—%} {0,0, %} } 9.2)

Implementing the construction algorithm, we find the following vector field:

V(S)(r|F) = {va Vy7 Vz}v
cos (02) Fy

Ve =2cos(03) Fy + cos (0O4) Fy — 2sin (O3) F3 + —

F 1 L
- OV | n(04) By~ L sin(0) Fr + 1 sin (04) B,

V3
V, = 2sin(O3) F1 + 2 cos (O3) F3 + cos (©2) Fy + cos (01) F5— (9.3)
1 1
— Ex/gsin (©2) F7 — Ex/gsin (©1) Fs,

2sin (O3) Fy n 2sin(04) F5+
V3 V3
+ cos (©4) Fs + cos (©2) Fr 4 cos (04) Fy,

V, = —sin(04) F> +

1 [ o — r

— Smasd

Fig. 21. In this picture, we show the location of the 8 points forming the lowest spherical
layer in the momentum lattice (€ Aj,,) whose squared radius is r? = 4/3. These points
split into two orbits under the Dg group. The two points corresponding to the North and
South Pole of the sphere form a 2-orbit. The six points on the equator of the sphere, that
are the vertices of an hexagon, form a 6-orbit
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where F; (i = 1,...,8) are real numbers and the angles ©; are the following
ones:

®1=—§W(3m+\/§y), ®2=2W(i—m>,

3
V3 9.4)
9, — 72 0, = iy
3 \/ga 4 \/§

From the explicit expression of the vector field in full analogy with Eq. (7.59), we
construct the action of the dihedral group Dg on the parameter vector F. Writing

VyeDg i VO (yxF) = VO () ROB]F), ©3)

we obtain the form of the reducible representation ](®)[y] which is completely
specified giving the images |(®)[A], and R®)[B] of the two group generators.
Explicitly, we find

Lo -¥ 00 000

0 0 0 0 —% 000

g L 00 000
o = | ° g 00 000

0 0 0 10 000

0 0 0 00 001

0 0 0 00 100

0 0 0 00 010

(9.6)

10 0000 0 0

0 -1 0000 0 0

0 0 1000 0 0
w0 ¢ 0010 0 0

0 0 0100 0 0

0 0 000 -1 0 0

0 0 0000 0 -1

0 0 0000 —10
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Retrieving from the above generators all the group elements and, in particu-
lar, a representative for each of the conjugacy classes, we can easily compute
their traces, and in this way establish the character vector of this representation.
We get

X[S] = {8715_15_25_250}- (97)

The multiplicity vector is

m [8] ={0,0,1,1,2,1} 9-8)

implying that the 8-dimensional parameter space decomposes into a Ds, plus a
Dy, plus two D5, and one Dg representations. The corresponding irreducible
Beltrami fields are easily constructed.

Irreducible Beltrami Field in the D3 Representation.

V(S‘D3)(r|F) {Vrv Vya VZ}

2 (—cos(©1) — cos (02) + 2 cos (O4))
= | 1v3(cos(©1)—cos(O2)) : 9.9)
sin (©1) — sin (O3) — sin (O4)

Irreducible Beltrami Field in the D4 Representation.

VEDP) (r|F) = (V,, V,, V.}
% (sin (©1) — sin (O2) + 2sin (O4))
= —1V3(sin(©1) +sin(O2)) ' ©-10
cos (01) + cos (02) 4 cos (O4)

Irreducible Beltrami Field in the D5, Representation.

VP (k{4 BY) = {Va, V,, Vi)

2Acos(O3) — 2Bsin (O3)

2 (Bcos (©3) + Asin (03)) | - (9.11)
0
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Irreducible Beltrami Field in the Dy, Representation.

VEIP) (e[{ A4, BY) = {Va, V,,, Va}

—Bcos (01) + Acos (02) + 2(A — B) cos (04)

V3 (Bcos(01) + Acos (02))

2(Bsin (01) + Asin (02) + (B — A) sin (04))
(9.12)

Irreducible Beltrami Field in the Dg Representation.

VIR (2|{4, BY) = (V.. V,, V2}

1V/3B (sin(©1) — sin (02) — 4sin (64))
= —%B (sin (©1) + sin (©2)) . (9.13)
V3B (cos (©1) 4 cos (O3) — 2cos (04))

Let us now observe that the only angle dependent on the vertical coordinate z is
O3 and that all the above irreducible Beltrami fields, except D,,, are independent
of ©3. Hence all these irreducible Beltrami fields reduce to two-dimensional
planar systems that are presumably integrable systems. This is geometrically
understandable since the direct sum of all these representations has dimension 6
and reproduces the contribution of the points in orbit (’)él) which is just planar.

Hence we can easily conjecture that for all orbits of type Oél) we have the
decomposition

oY ~ D, ® D3 @ D5, @ Ds, (9.14)

each irreducible component being a planar system.

The representation Dj,, on the other hand, corresponds to the contribution
of the points in the 2-orbit and leads to a trivial differential system which is
immediately integrated. The coordinate z = zp is constant in time and the
coordinates z,y are linear functions of time.

This example strongly indicates that in the hexagonal lattices the only non-
trivial systems are those related to orbits of length 12 and type two, three, and
four as we have already advocated.

9.2. The Lowest-Lying Orbit of Length 12 in the Hexagonal Lattice A} ..
In Fig.22, we show the location of the momentum lattice points forming the
lowest-lying spherical layer of length 12 under the action of the dihedral group

De, this layer is irreducible. Using the standard method, we obtain the following
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Fig. 22. In this picture, we show the location of the 12 points forming the lowest-lying D¢

orbit in the momentum lattice (€ Aj.,). They are located on a sphere of squared radius
2

r°=8/3

general solution of the Beltrami equation depending on 12 parameters:
V(IQ)(r|F) = {Vm Vyv VZ}7
Ve = cos (©g) F1 + cos (O5) Fr + V2sin () Fr + +v/2sin (©5) Fs+

+ L sin(04) (6\/§F3 - 3\/§F9> n % cos (O4) (4\/§F3 n 8\/§F9> n

12
1
+ — sm @3 6\/§F4 — 3\/§F10> + E coSs (@3) (4\/§F4— 8\/§F10) +

+ —sm

(-
+ —sm (©2) (6\/_F5 + 3\/_F11) + E cos (©2) (8\/§F11 - 4\/§F5> +
01) (3v2F. - 6V2F; ) + E cos (01) (~4v3F; — 8V3F1, ),

sin (©g) F1  sin (O3) Fy

Vy=— 7 7 + (9.15)
+ cos (O4) F3 + cos (©3) Fy + cos (O2) F5 + cos (©1) Fs+
F: E
+ cos (©g) Frr — cos (O5) Fg + sin (O4) ( 7% - 27—\/96>
F, T7Fy Fs  TF;
+ sin (O3) (\/6 2\/_> +sm(@2)<\/6 2\/f_i>+
. ks TF
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. sin (66) F1 . sin (@5) F2
V2 V2
1
+ €08 (65) s + cos (04) Fy + = sin (©4) (2\/6F3 + \/EFQ) +

‘/;:

+ cos (Bg) Fr+

1

-+ cos (@3) Fio + 6 sin (@3) (2\/6}74 — \/gFlo) +
1

+cos(07) Fi1 + 6 sin (©2) (2\/6F5 - \/EFH) +

1
4+ cos (@1) Fio + 6 sin (@1) (2\/6F6 + \/EFH) ,

where F; (i = 1,...,8) are real numbers and the angles ©; are the following
ones:

O = —%w (Sx—i— \/§(y+ 22)) , Oy = —%71’ (Bx—l— \/g(y — 22)) ,

O3 = —27 (32— V3(y—22)), O4=27(V3(y+2z)—3a), (9.16)
@5 _ _471'(5%—2)7 @6 _ 471'(2\/3;3;) )

The 12-dimensional representation of Dg in parameter space is also easily con-
structed and we find

0 0 00 -% 0 00 00 & 0
0 0 0 00 -Z 00 00 0 -
0 ¥ 000 0 0 -2o0oo0 0 o0
Y20 000 0 10 00 0 0
0 0 100 0 00 10 0 0
pidp |0 0 0 10 0 00 0 -10 0 |
0O 0 000 0 00 00 1 0
0 0 000 0 00 00 0 1
0O 0 000 0 01 00 0 0
0 0 000 0 10 00 0 0
0 0 000 0 00 10 0 0
0 0 000 0 00 01 0 0

(9.17)
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0O -1 00000 0 0 0 0 0
-10 00000 O O O 0 O
0 0 00100 0 0 0 0 0
0O 0 00010 0 0 0 0 0
0 0 10000 0 0 0 0 0
moopp |0 0 01000 0 0 0 0 0
0 0 00000 -10 0 0 0
0O 0 0000 -10 0 0 0 0
0 0 00000 0O 0 0 -10
O 0 00000 O 0O 0 0 -1
0 0 00000 0O —-10 0 0
0 0 00000 0 0 —-10 0

(9.18)
Retrieving from the above generators all the group elements and, in particular,
a representative for each of the conjugacy classes, we can easily compute their
traces and in this way establish the character vector of this representation. We
get

x[12] = {12,0,0,0,0,0}. (9.19)
The multiplicity vector is
m[12] ={1,1,1,1,2,2}, (9.20)

implying that the 12-dimensional parameter space decomposes into a D; (in-
variant Beltrami vector field) plus a D5, plus a D3, plus two Ds, and two Dg
representations. We present the form of the Beltrami vector fields in the various
representations:

Irreducible Beltrami Field in the D1 Representation.

V(llel)(ﬂF) ={Va, Vy, V2t
1
Ve = Z( —2c0s(01) + 2cos (O2) + 2cos (O3) —2cos (O4) —

— 4 cos(05) + 4 cos (Og) —
—V65sin (01) — V65sin (02) — V6sin (03) — V6sin (04) ),  (9.21)
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Vy = 1(2vBcos(01) — 2505 (63) + 2vBcos () — 2v/F cos (€4) -

—V/25in (0;) — V2sin (03) + V2sin (03) +
+ V2sin (04) — 2v25sin (O5) — 2v/25sin () )
sin (©1) — sin (O2) + sin (O3) — sin (O4) + sin (O5) — sin (Og)
7 .

‘/;:

Irreducible Beltrami Field in the Dy Representation.

V(12|Dz)(r|F) ={V,, V,, V.},

Vi = 2 (VBeos(01) — VBeos (63) + Veos (0) +
+v/3cos (04) + V2sin (61) — v2sin (02) +

+V/25in (03) — V2sin (04) — 2v/2sin (05) + zx/ﬁsm(@ﬁ)) :

Vy = % (—cos(©1) — cos (©2) — cos (O3) — cos (O4) + (9.22)
+2cos (O5) + 2 cos (Qg) — V6sin (O1) +
+v/6sin (02) + V6 sin (O3) — V6sin (94)) )

V. = cos (0©1) — cos (O2) — cos (O3) + cos (04) — cos (O5) + cos () .

Irreducible Beltrami Field in the D3 Representation.

VPO (e[F) = {Va, Vy, V21,
V, = i( — 2¢0s(01) — 2cos (03) — 2cos (O3) — 2cos (O4) +
+ 4cos(O3) + 4 cos (0g) — V6sin (01) +
+ V6sin (02) + V6 sin (03) — V6sin (04) ), (9.23)
v, = i(zx/écos (01) + 2v/3 cos (03) — 2v/3 cos (O3) — 2v/3 cos (O4) —
— V2sin (©1) + V25sin (03) — V2sin (03) +
+V2sin (©4) + 2v2sin (05) — 2v25in (65) ),

sin (0©1) + sin (O3) — sin (O3) — sin (O4) — sin (O5) — sin (@6).

‘/2:
V2
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Irreducible Beltrami Field in the D4 Representation.

V(12|D4)(P|F) = {va Vya VZ}7
1

V, = 5( —V/3cos (1) + V3cos (02) — V3cos (O3) +

+ V3 cos (04) + V25sin (01) + V2sin (03) —
—V/25in (03) — V/2sin (04) + 2v/2sin (05) + 2v/2sin (O¢) )

Vi = 5 (= cos(81) + cos (02) + cos (O) — cos (61) - O
—2co0s(05) +2cos (Og) —

—V/65sin (©1) — V65sin (O3) — V6sin (O3) — V6sin () )
V. = cos (01) + cos (O2) + cos (O3) + cos (O4) + cos (O5) + cos (Og) .

For the representations D5 and Dg, we observe that the 2 irreducible represen-
tations of Dg are complex so that in the real field, not surprisingly can happen
that we cannot separate the 4-dimensional D5 or Dg space into two orthogonal
irreducible subspaces. What actually happens is that in these spaces there is an
invariant real two-dimensional subspace, but its orthogonal complement is not
invariant. So, it is better to keep four parameters in each of these spaces.

Beltrami Field in the Ds Representation. Since the formulae in this case
become very big, we just present the projection on the Djs representation as a
substitution rule of the 12 parameters F; in Eq. (9.15) in terms of four independent
parameters (A, B, C; D). Explicitly, we have

2A-2B—-C+2D
F1—>

\/g )
2A-2B-C+2D

Fy — ,
? V3

F3 —>A,

F4 —>A,

F5 —>B,

Fy — B, (9.25)
F7 _)Ca

Fg — —C,

Fy — D —C,

Fig—C-D,

Fi1 — D,

Fiy — —D.
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Beltrami Field in the Dg Representation. In the same way as above, the Dg
Beltrami field can be obtained from Eq. (9.15) with the following substitution:
2A+2B—-C—-2D

V3
—2A—-2B+C+2D

V3

F1—>

F2—>

F3—>A
Fy— —A
Fs — B
Fs — —B . (9.26)
Fr—-C
F8—>C
F9—>—C—D
Fig— —-C—-D
Fiy—D
Fios — D

This concludes our short discussion of the hexagonal lattice case. By now it
should be clear that the algorithm works for any lattice and that the properties of
the corresponding Beltrami fields can be analyzed analogously to what we did in
depth for those living on the cubic lattice. This being emphasized, it is time to
turn to conclusions.

10. CONCLUSIONS AND OUTLOOK

In this section we plan to summarize the results of this paper and put them
into a perspective for future work and deeper understanding.

Yet, in order to do this, some general considerations are necessary which
might be particularly useful for those readers, we hope to have some of them,
who do not belong to the community of scientists familiar with the ABC-flows
and working on such topics. One of the two authors of this paper was in
such a position when he was encouraged by the other author to get involved
in the matters dealt with here. This author believes that the same shock that
he experienced while entering this research field will probably affect any reader
coming from the community of theoretical theorists and that the same fundamental
philosophical questions that confronted him at the beginning, remaining so far
unanswered, will equally bewilder such a reader. We want to emphasize that
the roots of such a situation are in the very different mentality, we venture
to say weltaunschauung, characterizing the community of theoretical theorists
(in this category we include classical and quantum field theorists, supergravity
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and superstring theorists, general relativists and the like) and the community of
mathematical physicists dealing with dynamical systems and related topics, ABC-
flows being one prominent province in that realm. For the sake of shortness, we
refer hereafter to such a community as to that of the dynamical theorists.

So let us first of all single out this difference in weltanschauung.

Both scientific communities share a high level of mathematization and rely
on sophisticated mathematical structures to formulate their constructions, often
they use the very same ones, yet, there is a drastic difference in their attitude
toward Mathematics.

In the community of theoretical theorists, Mathematics is scanned in the
quest for uniqueness, looking for such a priori conceptual choices that might
single out a unique and distinctive mathematical framework able to capture the
essence of a Physical Law and reduce its understanding to First Principles. Theo-
retical theorists are reductionists: what is most important is not the mathematical
structure per se, that is utilized to describe a physical process, or its simplified ide-
alized model, rather the conceptual category that singles out such a mathematical
structure, in other words, its Principle.

In the community of dynamical theorists, Mathematics is mostly appreciated
as a source of diversity, praise being obtained for each new solution of any given
equation and a bottle of champagne being opened to welcome the discovery of
any new model, for instance, of any new Integrable Dynamical System. In the
issues addressed in this paper, the main goal is the opposite, namely, to obtain
the most nonintegrable systems, yet the attitude does not change and any new
mathematical example of such a type is equally appreciated and welcome.

Two other essential differences in the weltanschauung of the two communities
concern the delimitation of the metatheories forming the play-ground of model-
builders and the role, use, and implementation of symmetries. The differences in
both these issues are quite relevant while trying to assess the character, relevance,
and perspective of the results we have achieved in this paper. So let us dwell on
this point.

In theoretical theory, the relevant metatheories have been established since
long time. Up to the seventies of the last century they have been Classical
Lagrangian Field Theories and their quantum descendants, namely the corre-
sponding Quantum Field Theories obtained from canonical quantization of the
former. Principal distinction in the vast container of Lagrangian Field Theories
is the space-time symmetry: Lorentz invariance for all models of Particle Physics,
Galilei invariance for some field-theoretical description of Newtonian or Statisti-
cal Mechanical Systems, the latter in many instances being interpreted as Wick
rotations of the former. The efforts of constructive quantum field theorists al-
lowed one to establish on a firm basis some general results for these metatheories,
the most important among which is the Spin-Statistics theorem. From the middle
seventies of the last century, both experiments and theory developments pointed
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to a further restriction of the metatheory category from generic Relativistic La-
grangian Field Theories to Matter Coupled Gauge Theories. Furthermore, a deep
conceptual revolution led to replace the concept of fundamental point-particles
with that of fundamental extended objects, strings and superstrings being the
first focus of attention, enlarged, after the second string revolution in 1996, to
p-branes. In these developments symmetry played a fundamental conceptual role:
bosonic space-time symmetry was enlarged to supersymmetry, a necessary step
in order to mix space-time and internal symmetries as proved by Coleman and
Mandula [26].

Hence, on the basis of this definition of the metatheory play-ground, whose
change is possible, but only at the price of a conscious, detailed and motivated
philosophical revision of some Fundamental Principles (a scientific revolution in
the Kuhn sense), the model building work of theoretical theorists is aimed either
at the construction of new instances of Lagrangian Field Theories in diverse
dimensions, displaying various types of catalogued symmetries as supersymmetry,
conformal symmetry, special bosonic gauge-symmetries, or at the understanding
of general properties of the former, or, still further, at the derivation of new exact
solutions of either new or old Field Theories. In all these procedures, the role and
the use of symmetry is well codified and falls into one of the following cases:

A) Symmetry G[L] of the Lagrangian £ and hence of the theory. The
classification of possible symmetries of the Lagrangian typically amounts to a
classification of theories inside the metatheory. The reduction is almost obtained.
We have to invent the Principle that favors one symmetry more than another one.

B) Symmetry G[S] of a solution S of the Lagrangian field equations which is
a subgroup of the Lagrangian symmetries: G[S] C G[L£]. Classification of G[S]
typically amounts to a classification of solutions S and this becomes particularly
relevant if solutions can be interpreted as vacua of the theory. Being an extra
functional-like, the energy functional can be typically advocated to select one
vacuum symmetry more than another. Here the primary example, with all its far
reaching consequences, is the spontaneous symmetry breaking mechanism.

C) Hidden symmetry which is a special declination of case A) or B), when the
symmetry of a Lagrangian £ or a solution S is significantly enhanced to a larger
one with respect to the obvious one that dictates the construction principles of L.

D) Dynamical symmetry: when the irreducible unitary representations of
some finite or infinite (super) Lie algebra Gp constitute the quantum states of a
theory (inside the metatheory). In this case, dynamics is completely reduced to
algebra. Typical instance of this are the two-dimensional conformal field theories
where the (super)-Virasoro algebra plays the role of Gp.

In the community of dynamical theorists, the landscape is much less defined
and clarified. The metatheory reference frame is just the vast and almost all
containing setup of dynamical systems, i.e., of first-order differential equations,
and the main conceptual categories are just those of Poissonian or generalized
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Poissonian structures. Integrability and nonintegrability are the main pursued
issues with almost no emphasis on the reduction of choices to the First Principles.
A vast and mathematically sophisticated literature deals with the construction of
a plethora of models each of which mostly plays the role of a Leibniz monad.
The role of symmetries in this vast literature is also episodical and not clearly
categorized as done in the above list. Indeed, what is missing is the attempt to
link symmetry to a philosophically motivated selection principle.

The typical attitude of dynamical theorists is that any good mathematical
result will sooner or later find its place in physical theory and therefore it is worth
pursuing. This is superficially very similar to the common belief of theoretical
theorists that all sound and elegant mathematical architectures, including in this
category all symmetries, have to be realized in the fabrics of Natural Law. The
conceptual difference, however, is enormous and it is hidden in the semantic
difference between result and architecture. What is missing in the attitude of
dynamical theorists is the reductionist tension toward a small set of Economic
First Principles rich of consequences but also strongly selective in the sense that
they encompass vast landscapes yet rule out many possibilities.

Having spelled out these weltanschauung differences, let us come to the case
of the ABC-flows which, with their generalizations, constitute the main topics of
the present paper.

Leaving aside the issue of periodic boundary conditions, already addressed
in the introduction, the main source of discomfort for one of the two authors and,
possibly, for the theoretical theorist reader of this paper is that the starting point
of the whole thing, namely Euler Equation (1.1), is not a Lagrangian, it is just
an equation. This means that the velocity field U(¢) is not uniquely identified as
a Lagrangian field and that any of its possible symmetries do not fall in category
B) of the above list. This is not too much surprising for any relativist who
remembers Einstein’s words about the two sides of his field equations. The left-
hand side, said Einstein, meaning the Einstein tensor formed from the metric, is
written on pure marble. The right-hand side, meaning the stress energy tensor,
is written on deteriorable wood. Indeed the stress-energy tensor T}, of perfect
fluids, which contains the velocity field, the energy-density, and the pressure,
was, according to Einstein, just a modeling of our ignorance, being subject only
to the kinematical and almost empty constraint of conservation V#T),, = 0. The
mission of theoretical physics was, according to Einstein, to transform the wood
into marble by bringing the right-hand side to the left, namely by geometrizing
it. This is what is currently done in unified field theory models and, in particular,
in models of inflation where the stress energy tensor is derived from a field-
theoretical Lagrangian. Now what is the Euler equation if not the nonrelativistic
analogue of the stress-energy tensor conservation law? So, we can similarly
say that the fundamental equation of hydrodynamics (1.1) is a modeling of our
ignorance and a priority mission would be that of deriving its main ingredient,
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namely the velocity field U(¢) from some field-theoretical Lagrangian. This is an
extremely urgent question, specially in view of the role that symmetries have in
this business.

The relation between points A) and B) in the consideration of symmetries
can be provisionally amended by substituting G[£] of the missing Lagrangian £
with the group of symmetries of the Euler equation (1.1). On R? this is just
the full Euclidean group E3. In the case of a T torus with a polarized constant
metric (2.3) related with some chosen lattice A, it becomes the group defined
in Eq.(5.4), namely, the semidirect product of the lattice point group with the
continuous translation group modulo the lattice A. Thus, by setting

GlL) = &, (10.1)

we can be in business with point A) of the above list.

This point in the discussion offers to us the opportunity to stress the first
and probably the main of our new results, namely the concept of a Universal
Classifying Group &l ,. Relying on the suggestion of crystallographers who seek
modifications of the lattice point groups, named Space-Groups, by the inclusion
of quantized translations of (5.3) that cannot be eliminated by conjugation with
elements of T3, we have advocated the following three points:

1. Frobenius congruence classes define for all lattice A an Abelian subgroup

Ly X Ly X Ly ~ U7 C T3 (10.2)

of quantized translations.
2. The semidirect product

BUL =P x Ty (10.3)

of the lattice point group P with the discretized translation group mentioned in
Eq. (10.2) constitutes a large discrete group that contains as proper subgroups all
possible space groups of crystallography.

3. The above defined group ®il,, named by us the Universal Classifying
Group, is that apt to organize all solutions of the Beltrami equation (1.14) into
irreducible representations and by this token to classify them.

Here comes the second and the most severe point of discomfort both for one
of the authors and for our hypothetical theoretical theorist reader but, at the same
time, here comes also the opportunity to stress the second main result of the
present paper.

As emphasized in Introduction, the main idea in the whole scientific landscape
around ABC-flows is given by Arnold theorem stating that the only velocity
fields able to give rise to chaotic streamlines are those that satisfy Beltrami
equation (1.14). The effort to substantiate this result in a more topological and
abstract way leads to the conception of contact structures, contact one-forms
and their associated Reeb (like) fields. Hence, the construction and classification
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of the Beltrami vector fields is a main priority in this arena of mathematical
hydrodynamics.

Our main contribution, thoroughly developed in this paper, is the recognition
that Beltrami equation (1.14) is nothing else but the eigenvalue equation for
the first-order Laplace—-Beltrami operator, the 4, d operator that, on a compact
Riemannian manifold, as the T torus happens to be, has a discrete spectrum, the
eigenfunctions being harmonics of the Universal Classifying Group &4y, that
can be systematically constructed with a rather simple algorithm and fall into
irreps of the same. Special solutions S can be characterized by invariance under

subgroups: G[S] C &4y. (10.4)

In this way we are in business also with point B) of the above list of symmetry
conceptions, yet the discomfort is related with the eigenvalue A\ in Eq.(1.14).
Who is going to tell us the value of A? If we do not have a theory from which
the Beltrami equation emerges as a field equation, then we do not have any reason
to choose one or another of the possible eigenvalues. We are just in the Leibniz
monad world. Every solution of the equation is equally admissible and we can just
open as many bottles of champagne as there are eigenvectors and eigenfunctions.
These are all the available generalizations of the ABC-flows. A priori it might
seem that, since we have infinitely many eigenvalues, there are infinitely many
eigenfunctions (with their moduli space) and this implies that we will get fully
drunk. Yet the number of irreducible representations of a finite group, like B4l,,
is finite, which sounds a warning that the collection of sparkling wine bottles
should also be finite. Indeed, and this is the third of our main results, we
have proven in this paper that for the cubic lattice there are actually only 48
different types of eigenfunctions which repeat themselves periodically; 48 is a
large number of bottles, but with some attention we can survive!

Coming back to the issue of a theory able to produce the Beltrami equation,
we observe the following two possibilities:

Possibility One. Being the first-order equation, the Beltrami equation might
be interpreted in the context of a field theory as a sort of instantonic equation
all of whose solutions are also solutions of the standard second-order equations,
although the reverse is not true. If we adopt such an ideology, we can easily single
out a simple candidate for such a field theory in Euclidean three dimensions. Let
us identify the one-form Q[Y! of Eq. (1.7) with a gauge one-form:

A =Yl (10.5)
and let us consider the following action functional:
A:/ﬁ, L=aF A+, F+[3FANA,

10.
F =dA, (10.6)
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which describes a standard U(1) gauge theory with the addition of a Chern Simons
term. The second-order field equation of this theory is

d*gF—f—éF:O & d(*gdA—i—éA):O7 (10.7)
@ @
which is certainly satisfied if
*g dA + ﬁA =0. (10.8)
2«
That above is indeed the Beltrami equation with an eigenvalue \ = —g dictated

by the ratio of the two coupling constants in the Lagrangian.

Possibility Two. The Beltrami equation is just the field equation of the field
theory. In this case we obtain the candidate Lagrangian by making the same
identification as in Eq. (10.5) and then writing

A:/ﬁ, L=0FAN*xsA+aFANA,

F— JA. (10.9)
The above action describes a U(1) Chern Simons gauge theory with the addition
of a mass term for the gauge field. Such a mass term might be induced by a
Brout-Englert-Higgs mechanism of spontaneous symmetry breaking. In this case
equation (10.8) is just the complete field equation.

The two mentioned possibilities* are quite interesting and challenging in
view of the AdS,/CFTj3 correspondence which relates a supersymmetric Chern—
Simons gauge theory on the boundary with a supergravity theory in the bulk of an
anti-de Sitter space AdS, (for the most general form of supersymmetric Chern—
Simons theories in d = 3, see [28] and for several examples of such theories
derived from AdS,/CFT3 correspondence, see [27,29-31]). We plan to come
back to such an issue in a forthcoming publication [32]. What we want to stress
here is that adopting such a point of view, one sticks to a Principle that rules out
the plethora of Beltrami flows and the feasting with flows of champagne. The
eigenvalue in the Beltrami equation is a ratio of coupling constants appearing in
the Lagrangian and one has to consider only those flows that fit to it. Furthermore
it is to be hoped that the ratio A = —(3/2« is fixed from other elements of the

* Approximately half month after the appearance of the present paper on the ArXive, a new
independent result was published by Ferrara and Sagnotti (Massive Born—Infeld and Other Dual
Pairs. arXiv:1502.01650), establishing that the two above-mentioned possibilities are actually off-
shell equivalent by means of a duality transformation that maps one Lagrangian into the other. On-shell
equivalence is evident from our equation (10.7). See also the old paper by Townsend, Pilch, and van
Nieuwenhuizen (Self-duality in Odd Dimensions. Phys. Lett. B 136 (1984) 38 [Addendum-ibid. B
137 (1984) 443)).
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construction, for instance, from the supergravity solution on AdS, X something.
In this case it would obtain an interpretation in terms of First Principles.

Let us now come to a further reason of discomfort in relation with symmetries.
In the presentation of our results we have observed that several interesting Arnold—
Beltrami flows are obtained by decomposing the irreducible representations of the
Universal Classifying Group into irreps of some of its subgroups H; C &il,.
When an identity representation is available in the branching rules, we obtain
the Arnold—Beltrami flow invariant under the group H;. In the existing literature
on ABC-flows, there is a general feeling that flows with symmetries have a
distinguished and more important role to play than other noninvariant ones, yet
nowhere such a role is spelled out in a clear way and there is no well-established
hierarchy of concepts for the interpretation of such symmetries. This is still
another manifestation of the problems that the lack of a field theoretical basis for
the flows does create. The streamlines are solutions of nonlinear equations and for
this reason there is no superposition principle. On the other hand, the equation
that defines the flows, namely the Beltrami equation, is linear and, as such, it
leads to a superposition principle. If one is able to anchor such an equation to
the firm ground of a field theory, then the moduli space of the solutions, namely
the parameters that fill the irreducible representations of the Classifying Group
B4y, can be explored with standard techniques: as it happens in many similar
situations, we should expect that the moduli-space points that correspond to an
enhanced symmetry are in some sense singular points and they might dominate
some appropriate path-integral.

Thus, we believe that all the conceptual problems we have pointed out can
be addressed and solved only in the framework of some reasonable field theory
for the velocity field U. This is, in our opinion, the priority one issue of this
research field.

Finally, in the vein of the above remarks let us come back to the discussion of
Eqgs. (1.30) and (1.31) of Introduction. We propose that in higher odd dimensions
d = (2p+ 1), instead that by equation (1.31), a generalized contact structure be
defined by a p-contact form a®) satisfying the condition

P A da® £0. (10.10)

At every point of the manifold My, 1, the kernel of the contact form is a subspace
of the tangent space T}, M of codimension p rather than of codimension one. So,
as in the classical three-dimensional case, also in 2p + 1 dimensions the contact
form defines a sub-bundle of the tangent bundle, yet with dimension of the fibre
equal to p + 1 rather than 2p. The same ideas about maximal nonintegrability of
such a bundle can apply, in the sense that its fibres can be prevented from being
the tangent spaces of any embedded hypersurface ¥,,1 C Map, 1 of dimension
p+ 1. We stress that the linear Beltrami equation for such generalized contact
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forms can be linked to supergravity field equations, in particular, for p = 3 to the
field equations of M-theory, when one compactifies M1; = My x My, This is
another issue that we plan to investigate.
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THE APPENDICES: TABLES OF CONJUGACY CLASSES,
CHARACTERS, BRANCHING RULES AND ORBIT SPLITTINGS

A. DESCRIPTION OF THE UNIVERSAL CLASSIFYING GROUP G536
AND OF ITS SUBGROUPS

In this appendix we provide the list of elements of the Universal Classifying
Group Gis36 and of all its subgroups that happen to be relevant in the construc-
tions discussed in the main text. The most relevant piece of information provided
here is the assembling of the group elements into conjugacy classes. This is done
both for the Universal Classifying Group Gisse and for each of its subgroups
relevant to us. This arrangement is essential for the calculation of characters
and for the decomposition of any representation into irreducible ones. The group
elements are uniquely identified by their code:

{ ny N2 nNg
77 2 Y 2 Y 2
where ~ is an element of the proper octahedral group labeled according to the
notation of Eq.(4.5), while ni,ns,n3 € {0,1,2,3} specify a translation. The

action of the group element {'y, o %} on the three Euclidean coordinates
{z,y,2} is
niy n2 N3 ny Mg N3
—, =, = . —, =, — . A2
(52 S e sy e+ {5 @
The subgroups we explicitly describe in the present section are the following

ones:
A) The chain of normal subgroups:

}, v € Oag4, (A.1)

Gisze > Greg > Gase > Giag > Gea, (A.3)

where Ggqg ~ Z4 X Zy X Z4 is Abelian and corresponds to the compactified
translation group. The above chain leads to the following quotient groups:

Gi1s36 Gres
~ Za;
Gres

Z .

Gase 7 Gias 2 ?
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B) The subgroup Gigo C Gis36, With respect to which the 6-dimensional
point orbit remains irreducible. Gigo is not a normal subgroup but possesses
a chain of normal subgroups that make it solvable and allow for the complete
calculation of its irreps and character table:

Gio2 > Gog > Gug > Gig. (A.S)

C) The subgroup GF192 C Gis36, With respect to which the 6-dimensional
point orbit splits into a pair 3 ® 3 of irreducible representations. The subgroups
G192 and GFigy are isomorphic: Gigo ~ GFig2, yet they are not conjugate
to each other. Indeed, the branching rules of Gis3g-irreps with respect to either
G192 or GF1g9 are sometimes different. Just as Gigo also GF192 is not a normal
subgroup.

D) The subgroup Ohyg C G192 which is isomorphic to the extended octahe-
dral group Oy, of crystallography.

E) The subgroup GS24 C GF192 which is isomorphic but not conjugate to
the proper octahedral group Og4 (i.e., the point group) and appears as the group
of hidden symmetries of a parameterless Arnold—Beltrami flow derived both from
the 6-point orbit and from the lowest-lying 24-point orbit.

F) The subgroup GPs4 C G192 which is not isomorphic to the proper octahe-
dral group Os4, having a different structure of conjugacy classes, and appears as
a group of hidden symmetries of a parameterless Arnold—Beltrami flow derived
from the 12-point orbit.

G) The subgroup GKs4 C GFi92 which is isomorphic but not conjugate
to the group GPo4, and also appears as a group of hidden symmetries of a
parameterless Arnold—Beltrami flow derived from the 12-point orbit. Both GP2y
and GKo4 are isomorphic to the abstract group As X Zo

H) The subgroup GS32 C G192 which appears as a group of hidden symme-
tries of a parameterless Arnold-Beltrami flow derived from the 8-point orbit.

I) The subgroup GKso C GFi92 which is isomorphic but not conjugate
to GS32 and also appears as a group of hidden symmetries of a parameterless
Arnold-Beltrami flow derived from the 8-point orbit.

A.1. The Group Gis36. In this section, we list all the elements of the space
group Gisse, organized into their 37 conjugacy classes.

Conjugacy Class C1 (Giss6): # of elements = 1

{nooo} (A.6)
Conjugacy class Ca (Gissg): # of elements = 1

{ 1, 1 1 1 } (A7)
Conjugacy class Cs (Gisse): # of elements = 3

{]-laovoa]-} {11,0,1,0} {11a170a0} (AS)
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Conjugacy class C4 (Gis3g): # of elements = 3
{11a071a1} {11a170a1} {11a171a0}

Conjugacy class Cs (Gisse): # of elements = 6

{1170507%} {1170507%} {11507%50}
{]-lvoa%ao} {]-lvévoao} {]-h%aovo}

Conjugacy class Cs (Gisse): # of elements = 6

{11727151} {11715271} {1151715%
{11715172} {117 5271} {115%5171}

Conjugacy class C7 (Gisse): # of elements = 8

{1,333} {lug53) {3} {1n33.3
{11’2’2’2} {11’2’2’2} {11727272} {11727272

Conjugacy class Cs (Gissg): # of elements = 12

{1170a272} {]—laovgag} {]-lvoagvg} {]—1a072a§
{11727052} {115[2507[2} {11757%70} {11557370}
(0303} (0203} (nhho) (1330}

Conjugacy class Co (Gisss): # of elements = 12

{11507%51} {1170517%} {1170517%} {11507%51}
{1,1,0,1} {11, 3,1,0} {1.,1,0,4} {11,1,0,2}
{11a17%a0} {117]-;%;0} {117370;1} {]-h%a]-vo}

Conjugacy class C1o (Gisse): # of elements = 12

{11757571} {115%517%} {11757153} {11557371}
{11715272} {11517553} {11715272} {11517353}
{11727571} {]—lagalv;} {11727]-;2} {]—lagvgv]-}

Conjugacy class C11 (Gisse): # of elements = 12
{31507050} {31507150} {31517050} {31517150}
{32a070a0} {32a070a1} {32’170’0} {32’170ﬂ1}
{33a070a0} {33a070a1} {33’071’0} {33’07]"1}

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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Conjugacy class Ci2 (Gis3e): # of elements = 12

{31507051} {31507151} {31517051} {31517151}
{32a071a0} {32a071a1} {32’171’0} {32’17]"1}
{33517050} {33517051} {33517150} {33517151}

Conjugacy class C13 (Gisse): # of elements = 12

{3,220} {315,530} {313,530} {31,3,3,0}
{327%705%} {325%50 §} {327%705%} {325370 3
{33705272} {33507252} {33705272} {33507252

Conjugacy class C14 (Gis36): # of elements = 12

{31727§71} {315%5351} {31727271} {3152727 }
{327%715%} {325%517%} {327%715%} {325371 2
{337]-;272} {33a172a2} {337]-;272} {33a172a2

{31,0,0,5}
{31,1,0, 3}
{32,0,5.0}
{32,1,3.0}
{35.3,0,0}
{33,3,0,0}

{31,0, 3.0}
{31,1,5,0}
{32,0,0,5}
{32,1,0,3}
{33,0.0,5}
{33,013}

{3:,0,0.3}
{31,1,0.3}
{32.0,5.1}
{32,1,5.1}
{33,2,0.1}
{33,3,0.1}

{31,0,3.0}
{31,1, 3.0}
{32,0,0.3}
{32,1,0.3}
{33,0,0.3}
{33,0,1.3}

{31,0,1, 3}
{31,1,1,5}
{82,0,3,0}
{32,1,3,0}
{35,%,1,0}
{3s,3,1,0}

{31,3,0,0}
{31,3,0,0}
{32,3.0,0}
{32,3,0,0}
{32,0.3,0}
{33,0.3,0}

Conjugacy class C15 (Gisse): # of elements = 24

{31,0,1,3}
{311,1,3}
{32,0,3.1}
{321,351}
{33,%,1,1}
{353, 1,1}

Conjugacy class C16 (Gisse): # of elements = 24

{31,3,1,0}
{31,3,1,0}
{32,3,0,1}
{32,3,0,1}
{33’072’ }
{350,351}

(A.17)

(A.18)

(A.19)

(A.20)

(A21)
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Conjugacy class C17 (Gisse): # of elements = 24

{833,017 {31,5,1,1}
{3,201} {31,5,1,1}
{8203,1,0} {35,5,1,1}
{32,3,1,0} {33, 1,1}
{85:1,5,0} {351,351}
{33,1,2,0} {331,351}

Conjugacy class C1s (Gisse): # of elements = 24

{31,0, 3.1}
{31,135, 1}
{32,013}
{321,135}
{33,1,0.5}

{335 17 1) %}

{31’2 120 %}
{31’2 % %}
{32,5,5:3}
{32’2 % %}
{33:3:3:3)
{33,333

{3170’272
{31,3.0, 3}
{3,135
{31,3,0,3}
{3270’272
{327%7%70}
{3271’ 2 2
{323,350}
{33,3,0,5}
{33,315}
{33,3.0,3}

{31,0, 3.1}
{3,131}
{32,0,1,3}
{32,113}
{33,1,0.3}

{337 1) 17 %}

{31335} 3u3.33) {813.3.3)
{3232 Bua.3a) 813,33}
{82,223} {32233} {32333}
{822,535 {82533} {323.3.3}
{33223} {38233} {3s32.3)
{832,535 {85333} {33.3.3}
Conjugacy class Ci9 (Gis36): # of elements = 48

{31’072’5 {3170’272 {31’072’5

{3,203} {Bu3.13) {81313

{Butza) 3uL3a) {811.3.3)
{3,203} {81313} {3,313}
{32,0,1,3} {350,211 {35,032

{32251 {32230} {32331}
{32,1,4,2} {3,,1,2,3} {3,,1,3,3

{32.3,3.1} {32,5.3,0} {32,5,5.1}
{35205} {352,530} {353,351}
{832, 1.2) {8352,3.0} {353,231}
{35.2,05} {353,3.0} {353,351}
{32, 1.2} {852,3.0} {353,531}

{337 %7 ]-a %

(A.22)

(A.23)

(A.24)
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{41,0,0,0}
{41,1,0,0}
{42,0,0,0}
{42,1,0,0}
{43,0,0,0}
{43,1,1,0}
{44,0,0,0}
{44,1,0,1}
{45,0,0,0}
{45,1,0,1}
{46,0,0,0}
{46,1,1,0}

{41,0,0,1}
{41,1,0,1}
{42,0,0,1}
{42,1,0,1}
{43,0,1,0}
{43,1,0,0}
{44,0,0,1}
{44,1,0,0}
{45,0,0,1}
{45,1,0,0}
{46,0,1,0}
{46,1,0,0}

{4170’2’2
{41,155
{4270’2’2
{42,1, 3,3}
{43,0,0,1}
{43,1,1,1}
{44,0,1,0}
{44,1,1,1}
{45,0,1,0}
{45,1,1,1}
{46,0,0,1}
{46,1,1,1}

{41,0,3.3
{4171’2’2
{42,0.3,5
{4271’2’2
{45,0,1,1}
{43,1,0,1}
{44,0,1,1}
{44,1,1,0}
{45,0,1,1}
{45,1,1,0}
{46,0,1,1}
{46,1,0,1}

{41,0,1,1}
{41,1,1,1}
{45,0,1,1}
{43,1,1,1}
{43,330}
{45.5,3.0}
{44,3,0,3}
{445,035
{45.3,0,5}
{45,3,0,3}
{46.3,3.0}
{46,330}

{41,0,1,0}
{41,1,1,0}

{42,0,1,0}
{45,1,1,0}

{43.3,3,0}
{43,350}
{44,3,0,3}
{44,3,0, 5}
{45’ 072}
{45,3,0,2

{46’2’2’0}
{46,2,3,0}

Conjugacy class Cao (Gisse): # of elements = 48

{4170’272
{4171’275
{42.0,3, 5}
{42,1,3. 3}
{43.3, 3.1}
{43.3,3.1}
{443, 1,%
{44727 ’2
{45,5.1,3}
{453 1.3}
{4633, 1}
{463, 3:1}

Conjugacy class Co1 (Gis3e): # of elements = 48

{4170’272
{4171’272
{42,0,3.3
{4271’272
{43,5,5:1}
{43,3,5:1}
{44,5,1.3
{44,3,1, 3}
{45,315
{45,3,1.3
{4672727 }
{46,3:5:1}

(A.25)

(A.26)
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{41, 3,0,0}
{41,3,0,0}
{42, 3,0,0}
{42,3,0,0}
{45,0,0,3}
{45,1,1,3}
{44,0,3,0}
{441,531}
{45,0,3,0}
{45.1,5.1}
{46,0,0,5}
{46.1,1, 3}

{44,3,0,1}
{41,2,0,1}
{42,3,0,1}
{42,2,0,1}
{45,0,1,5}
{4,1,0,3}
{44,0,3,1}
{441,350}
{45.0,3,1}
{45.1,3,0}
{46,0,1,3}
{46,1,0,5}

™
{4
{427
{42,3,4,
{43,0,0,2}
{45.1,1,3}
{44,0,3,0}
{44, 1,3, 1}
{45,0,3,0}
{45,1,5,1}
{46,0,0,3}
{46,1,1,3}

D= l\DIC/J I\DIP—‘

[T T l\DIH l\)l»—i
—— e

Nl W NI N

{41,2:5:3}
{41.3.3.3}
{42,5,5:3}
{42.5.3:3)
{43,0,1.3}
{45,1,0.3}
{44,0,3,1}
{44,1,5,0}
{45,0,3,1}
{45,1,5,0}
{46,0,1,3}
{46,1,0.3}

{41,3,1,1}
{41,5,1,1}
{42,3,1,1}
{42,3,1,1}
{453,353}
{453,533}
{443,335}
{46.3.3.3}
{45.3.3,3}
{45.3,3. 3}
{46.3.5 3}
{46.3.3, 3}

{417 %7 ]-aO}
{417 %7 150}
{427 %7 ]-aO}

Conjugacy class Caa (Gisse): # of elements = 48

{4,
far,
{4
{4
{4
{4
N
{a.
{4
{4,
{4

—~—
S
(=}

Conjugacy class Caz (G1s36): # of elements = 48

N l\DI»i loloo l\)l»i wlw l\)l»i wlw l\)l»i wlw l\)l»i wlw I\DIP—‘

= l\DIC/J I\DICO I\DIC/J l\DICO I\DIC/J l\DICO I\DIH l\DICO I\DIC/J l\DIC/J I\DICO

N l\DIP—‘ I\DIC/J l\DICO I\DIC/J l\DICO I\DIH l\DIC/J I\DICO l\DI

M e e M e e M A e e A

W N[W N DWW W N NW W N= D= N W

NIW NW NW N = NW W NW W W

M e e M M e e A

(A.27)

(A.28)
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{51,0,0,0}
{51,1,0,0}
{52,0,0,0}
{52,1,0,0}
{53,0,0,0}
{53,1,0,0}
{54,0,0,0}
{54,1,0,0}
{55,0,0,0}
{55,0,1,0}
{56,0,0,0}
{56,0,1,0}

{51,0,0,3}
{51,1,0, 3}
{52,0,3,0}
{52.1,3,0}
{55,0,3,0}
{5s,1,3,0}
{54,0,0,3}
{54,1,0,3}
{55,1,0,0}
{55.3,1,0}
{56, 3,0,0}
{56, 3,1,0}

{51,0,1,0}
{51,1,1,0}
{52,0,0,1}
{52,1,0,1}
{53,0,0,1}
{53,1,0,1}
{54,0,1,0}
{54,1,1,0}
{55,0,0,1}
{55,0,1,1}
{56,0,0,1}
{56,0,1,1}

{51,013}
{51,113}
{52,0, 3,1}
{52,1,3,1}
{53,0, 3,1}
{53,1, 3,1}
{54,013}
{54,113}
{55,5,0.1}
{35,5, 1,1}
{56,3,0,1}
{36,3, 1,1}

{51:3:3.0}
{51,330}
{52,3.0.5}
{52,3.0.5}
{53,3.0.5}
{53,3,0,5}
{54,3:3.0}
{54,330}
{55’072’2
{55’072’2
{36,033
{56’072’2

{51,333}

=
<t
—
[\l
[\~
[\~
——

——

ot

=~

o
W wl»—t tolo: wl»—t I\DIH wl»—t I\DIH l\DIH wlw wl
[T ST ST ST G VR T IO ST ST T ST
P v v e v e e e e

Conjugacy class Cay (Gisse): # of elements = 48

{51,3,3,0}
{51,320}
{52,3:0,5}
{52,3.0,3}
{53,5:0.5
{53,3,0,5
{54,3:3.0}
{54,320}
{5570’272
{5570’272
{56,035
{5670’272

Conjugacy class Cas (G1s36) : # of elements = 48

(A.29)

(A.30)
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{51,0,0,1}
{51,1,0,1}
{52,0,1,0}
{52,1,1,0}
{53,0,1,0}
{53,1,1,0}
{54,0,0,1}
{54,1,0,1}
{55,1,0,0}
{55,1,1,0}
{56,1,0,0}
{56,1,1,0}

{51,0,0,3}
{51,1,0,3}
{52,0,3,0}
{52,1,3,0}
{55,0,3,0}
{5s,1,3,0}
{54,0,0,3}
{54,1,0,3}
{55,2,0,0}
{55.3,1,0}
{56,3,0,0}
{56,3,1,0}

{51,0,1,1}
{51,1,1,1}
{52,0,1,1}
{52,1,1,1}
{53,0,1,1}
{53,1,1,1}
{54,0,1,1}
{54,1,1,1}
{55,1,0,1}
{55,1,1,1}
{56,1,0,1}
{56,1,1,1}

{51,013}
{51.1,1.3}
{52,0, 3,1}
{52,1,3, 1}
{53,0, 5,1}
{53,1, 3,1}
{54,0.1,5}
{54,113}
{55,3,0.1}
{35,3, 1,1}
{56,3,0.1}
{36,3, 1,1}

{51:3:3.1}
{51,331}
{52,3: 1,3
{523 1.5}
{833 1.5}
{53,313}
{54,331}
{54,331}
{55’172’2
{55’172’2
{36,133
{56’172’2

——
ot
it
I~ olw

]

[S][oV)

N[

[S][9)

[S][9)

[\l

[S][9)

N[

e W e W et S e e e T e e e W
Ut Ut 1 Ut Ut ot Ut ot Ut (¥
=Y = ot et ~ ~ w w ] [
N[
NWw N- W NFE = N DWW D= N N
N[= Nl= N N= = N= D= N N= = N
e e A e A A A e A

N[

Conjugacy class Cag (Gisss): # of elements = 48

{51,3:3:1}
{51,321}
{52,3:1.5}
{52,3: 1.3}
{83,5:1.5
{53,3: 1,5
{54,331}
{56,321}
{55,133}
{5571’272
{36,135
{5671’272

Conjugacy class Ca7 (G1s36) : # of elements = 48

st Wi et
t ot
[ V) =

NI Nfw

=
Tt
]

[S][oV)

N[

[S][9)

(SIS

[S][9)

[\l

[][9)

(SIS

NI N W N[ = N D NI Dl N Nlw
(NG N A A N A D D 2 S N S

NI N[= W N[ W W W DW= N W

It Nt N atn N et Nt Vet Ut Nt
ot ot ot Ot (@) ot Ot ot
(=] [=2] [$28 ot = - w w

(SIS

(A31)

(A.32)
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{51,0,5.0}
{51,1,3.0}
{52,0,0,3}
{52,1,0,5}
{55,0,0,3}
{53,1,0,5}
{54,0,5,0}
{54,1,3,0}
{55,0,0,3}
{55,0,1,3}
{56,0,0. 3}
{56,0,1, 3}

{5170’272
{5171’ 2 2
{52,0,3, 3}
{5271’272
{5370’272
{5371’272
{5470’272
{5471’272
{55,3,0,5}
{55,315}
{56,3:0,3}
{36,3: 1,5

{51,0,3.0}
{51,1,3.0}
{52,0,0,3}
{52,1,0.3}
{53,0,0,3}
{53,1,0.3}
{54,0, 3.0}
{54,1,3,0}
{55,0,0.3}
{55:0.1,3}
{56,0,0.3}
{36:0.1,3}

{51’072’2
{51’17 2 2
{52,0, 3,3}
{52’172’2
{53,0.3.5
{81,535}
{54’072’2
{54,1,3,5}
{55,3:0,3
{55,3:1,5
{56,3,0,3}
{36,3: 1,5

{51,5,0,0}
{51,3,0.0}
{52,5,0,0}
{52,3,0,0}
{53,5,0,0}
{53,3,0,0}
{54,5,0.0}
{54,3,0,0}
{35,0. 3,0}
{55,0,3,0}
{36,0. 3,0}
{36,0,3,0}

{51,3.0,3}
{51,3.0. 3}
{52,3.3,0}
{523, 3,0}
{5s,3:3,0}
{5s,3,3,0}
{5471 0, 3

{54,3,0 ’5}
{55,330}
{55,3.3,0}
{56.3. 3,0}
{56, 3,0}

Conjugacy class Cas (Gisse): # of elements = 48

{51:3,1,0}
{51,3,1,0}
{52,5,0,1}
{52,3,0,1}
{83,5,0,1}
{53,3,0,1}
{54,5,1,0}
{54,3,1,0}
{55,0, 3.1}
{55:0,3.1}
{36,0, 3.1}
{36:0,3.1}

Conjugacy class Cag (G1s36): # of elements = 48

{51,3.1,
{51,371,5
{52,3,3.1}
{52,3,5,1}
{53,3.3,1}
{53,%,%,1}
{54’ 2 ’2
{54,3, 1,5}
{55,331}
{65,3. 3,1}
{56.3. 3.1}
{56,5. 3,1}

(A.33)

(A.34)
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{51,0,5.1}
{51,1,3: 1}
{52,0,1, 3}
{52,115}
{55,0,1, 3}
{33,115}
{54,0,5,1}
{54,1,3.1}
{55,1,0.3}
{55, 1,13}
{56,1,0. 3}

{565 17 1) %}

{5170,275
{5171’ 2 2
{52,0.3,5
{5271’272
{5370’272
{5371’272
{5470’272
{5471’272
{55,3:0,3}
{553, 13}
{36,3:0,5}
{56:3: 1.3

{51,0,3.1}
{51,1, 3.1}
{52,0,1,3}
{52,1,1.3}
{53,0,1,3}
{53,1,1.3}
{54,0, 3.1}
{54,1, 3.1}
{55,1,0.3}
{55 1.1,3}
{56,1,0.3}

{567 1) 17 %}

{51,072,5
{51’17 2 2
{52’072’2
{52’172’2
{53,0.3.3
{53,135, 3}
{54’072’2
{54,1,3, 5}
{55,3,0.3
{55,3:1.3
{56,3,0.3}
{56,3:1.3

{51,3,0,1}
{51,3,0,1}
{52,3,1,0}
{52,3.1,0}
{53,%,1,0}
{5s,3,1,0}
{54,3,0,1}
{54,3,0,1}
{55,1,3,0}
{55.1,3,0}
{561, 3,0}
{56, 1,3, 0}

{51,305

{51,305

{52,3.3,0}
{52,3.3,0}
{5s,3:3,0}
{5s,3.3,0}
{54,3,0,3}
{54,5,0,3}
{55.3.3,0}
{55,3.3,0}
{56,330}
{56,3:3,0}

Conjugacy class Cso (Gisse): # of elements = 48

{513, 1,1}
{513, 1,1}
{52,3,1,1}
{52,3,1,1}
{53,3,1,1}
{5, 3,1,1}
{54,3,1,1}
{54,3,1,1}
{551,351}
{55, 1,5, 1}
{56, 1,3, 1}
{56, 1.5, 1}

Conjugacy class C31 (Gisse): # of elements = 48

{51,351 ,5
{51’ 2 ’2
{52,3,5:1}
{52.5,3.1}
{83,3:5:1}
{83,3,5:1}
{56,5:1.3
{56,3: 1,3
{55:3,5:1}
{55:3:3:1}
{36, 3. 3.1}
{56:2:3:1}

(A.35)

(A.36)
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{4150705 %}
{41a07 ]-a %}
{41a 170a %}
{41a ]-7 ]-a %}
{4250705 %}
{42507 1) %}
{425 1705 %}
{425 17 1) %}
{43a07 %,0}
{43a %,0,0}
{43a ]-7 %,0}
{435 %5070}
{4450705 %}
{445 %5070}
{445 1705 %}
{44a %,0,0}
{45a070a %}
{45a %,0,0}
{455 1705 %}
{455 35070}
{46507 %50}
{46a %,0,0}
{46a ]-7 %,0}
{46a %,0,0}

{41,0,0,3}
{4,0,1,3}
{41,1,0,3}
{4,1,1,3}
{42,0,0,3}
{42,0,1,5}
{42,1,0,5}
{42,1,1,3}
{45,0,3,1}
{45,3,0,1}
{451,531}
{45,3,0,1}
{44,0,0,5}
{44,3,0,1}
{44,1,0,3}
{44,3,0,1}
{45,0,0,5}
{45,3.0,1}
{45,1,0,3}
{45,2,0,1}
{46,0,3,1}
{46,3,0,1}
{461,531}
{46,3,0,1}

{41,0,5,0}
{41,0,3,0}
{41,1,3,0}
{41,1,3,0}
{42,0,3,0}
{42,0,3,0}
{42,1,3,0}
{42,1,3,0}
{45,0,3,0}
{4s,3,1,0}
{4s,1,3,0}
{4s,3,1,0}
{44,0,1,5}
{44,%,1,0}
{44,1,1, 3}
{44,3,1,0}
{45,0,1,5}
{45,3,1,0}
{45,1,1,5}
{45.3,1,0}
{46,0,3,0}
{46,310}
{46,1,3,0}
{46,3,1,0}

Conjugacy class Csa (Gisse): # of elements = 96

{41,0,3,1}
{4,0,3,1}
{41,351}
{41,531}
{42,0,5,1}
{42,0,3.1}
{42,1,5.1}
{42,1,3,1}
{4,0,3,1}
{45,3,1,1}
{45,1,3,1}
{45,3,1,1}
{44,0,1,3}
{44,3%,1,1}
{44,1,1,3}
{443, 1,1}
{45,0,1,3}
{45,3,1,1}
{45,1,1,3}
{45,2,1,1}
{46,0,3,1}
{46,3,1,1}
{46,1,3,1}
{46,3,1,1}

(A.37)
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{41,2,0,3}
{41,515
{41,3,0,3}
{41.5.1,5}
{42,3.0,5}
{42,5,1.3
{42.5.0,5}
{42,5.1,3}
{4370’272
{437 0, 2}
{4371’275
{43,3,0,3}
{4470’272
{44,2,5,0}
{4471’272
{44727270}
{4570’272
{45,3:3.0}
{4571’275
{45,3,3,0}
{4670’272
{46,3,0,5}
{4671’272
{46,3.0,5}

{41,4%,0,2
{41’2’ 72
{41,3.0.3}
{41.3. 1.3}
{42,5,0.3}
{42,5,1.3}
{42,3.0,3}
{42,5,1.5}
{43,0,3,3
{43,1 0, 3
{43’172’5
{45,3,0,2
{44’072’2
{44,5,3:1}
{44’172’2
{44’2’2’1}
{45’072’2
{45,5,3:1}
{45’172’2
{45,5, 3.1}
{46’072’2
{46,3,0,3}
{46’172’2
{46,3 0, 3

{417 2 270}
{417 é7 270}
{41,530}
{41,3.3,0}
{42,330}
{427 %7 %70}
{42,3.5,0}
{427 %7 %70}
{43705 2 2
{437_ l
{437 ]-a 2 §
{437 %7 1) %}
{4470a 2 2
{447%7%70}
{447 1; 29 2
{447 27270}
{45,0,3, 3}
{457 %7 %70}
{457 ]-a %7 %}
{457%7%70}
{46705 2 2
{467 2 ]-a %
{467 1; 29 2

{467 37]-; é

Conjugacy class Css (Gisse): # of elements = 96

{4152727 }
{415é727 }
{41a%7%71}
{41537%71}
{42a%7%71}
{42,5. 3.1}
{42,3,5.1}
{42,3.2.1}
{43507255
{43527 ag
{43a172a§
{435371 2
{44a072a2
{44a%7%71}
{44517252
{44a27271}
{45.0,3,5}
{455%7%71}
{45a17%a%}
{45537%71}
{46507252
{46;_ 1;%
{46517252
{46a27 ag

(A.38)
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{22,070 02}
{227%7051}
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{227%705§}
{235070 02}
{237%7051}
{235170 12}
{237%705§}
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o ,2,3
s o
26,:
{26,5, i
{26,57 '3}
{27,8,
{27,17 '3}
{27,5,
(2.3
{28,8, o
{28, 17 1,%
{28,5’2,1}
2 51
)2
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,i,|H NI
Ml
—
2 N N)
|—=
—— M

Ny
o
=2

3
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ol — —
—
ol
N
=
)
Ol )
i 0O
2 |
vl
ol

{21,0 1
s
{21,12711,%}
o
{22,571 , 2
oty
P
(2,2 ”
‘[23,571,é
oty
P
337371,;}
4,0,1
rrr s
P
s
{25,573,%
i
{25,12711,%
s
(11}
{267 Lé
6, 1
i
P
iy
s
P
P
otis
()1
8, 1,1
s
7271a§
2

Conj
jugac
y cla
ss C
34 (Gis36): #
t# of el
emen
ts =
=128

{21,0
o 503
{21,]2.7271}
{21, 1292
{22,8727 o
{22,172’2
{22,57271}
{22, 12732
{23,87270}
{23,172’2
{23,57271}
{23, 12732
{24’(2)7270}
{24’ 172’2
{24’27270}
{24, 72’2}
{25,(2)7271}
o 1203
{25,]2.7271}
{25,3’%’2
{26,8’2’0}
{26, 7272
{26,57270}
(20,80
{27,87§7}}
b
{27,57270}
{27, 12732
{28,87271}
(20 0
{28,1:572}
2’5}

{28.3.5:1}

(A.39)
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{2170a07 %}
{217 %70a0}
{217 ]-aOv %}
{217 %705 1}
{2270507 %}
{227 %705 1}
{227 1507 %}
{227 %7050}
{2370507 %}
{237 %7050}
{237 1507 %}
{237 %705 1}
{2470a07 %}
{247 %7Oa 1}
{247 ]-aOv %}
{247 %70a0}
{2570a07 %}
{257 %7Oa 1}
{257 ]-aOv %}
{257 %70a0}
{2670507 %}
{267 %7050}
{267 1507 %}
{267 %705 1}
{2770507 %}
{277 %7050}
{277 1507 %}
{277 %705 1}
{2870507 %}
{287 %7Oa 1}
{287 ]-aOv %}
{287 %70a0}

{21,0,3,1}
{21,3.3.3}
{21,1, 5,0}
2,0, 1,0
{22,3,3,3
{22,1,3,1}
23,0,1,1
{233,353
{23,1,3,0}
{233,533
{24,0,3,1}
{24,3,3,3
{24,1,3,0}
{24,3,3,3
{25,0,3,0}
{25,3,3,3
{251, 5.1}
{25,3.3.3
{26,0, 5,0}
{26,3,3.5}
{26,1, 3,1}
{23,353
{27,0,3,0}
{273,533
{27,1,3,1}
{27.3,3.3}
{25,0,3,1}
{28,3.3,3
{2s,1,3,0}

3 1 3
{2s,3,3:3

{21,0,1,3}
{21,311}
{21,1,1, 3}
{21,310}
{22,0,1, 3}
{22,4,1,0}
{22,1,1, 3}
{223, 1,1}
{25,0,1, 3}
{25,4,1,1}
{25,1,1,3}
{25,3,1,0}
{24,0,1,3}
{24,3,1,0}
{24,1,1, 3}
{24,311}
{25,0,1, 3}
{25,310}
{25,1,1, 3}
{25,311}
{26,0,1, 3}
{26,1,1,1}
{2,113}
{26,2,1,0}
{27,0,1, 3}
{27,5,1,1}
{27,1,1,3}
{27,3,1,0}
{25,0,1, 3}
{2s,3,1,0}
{2s,1,1, 3}
{25,311}

Conjugacy class Css (Gisse): # of elements = 128

{21,0,3,0}
}21,%,§,%£
21,1,5,1
{21,3.3.3
{22,0,3.1}
(2,133
{20,1,
{22, %,
{2s,0,
{2s, 3,
{2s,1,
{2s,3,
{24,0,
{24, 3,
{24,1,
{24,3,
{25,0,
{25, 1,
{25,1,
{2s,3,
{26,0,
{26, 3.
{26,1,
{26, 2,
{27,0,
{27,1,
{27,1,3,0}
{2.3.3. 3}
{2s,0,3,0}
{25,333}
{2s,1,3.1}

3 3 1
{2s,3,5:3

()

— s o O e ol O o
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(A.40)
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{21
0,0
2,001
inv%vOal}
1, 1,0 5
{217%70’ 3}
{22,0,0,15
{227%70, 3}
izf,170,61
{227%7051}
5,0,0 f
{237%70, 3}
i2235170,o§}
{237%7051}
40,0 1
{247%70’ 3}
{24,1,013
{2,,3,0 /
i225; 07 0 ’12}}
{257%70al}
5,1,0 02
{257%70’ 3}
{26, 0, 0’15
{26,1,0 }
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{275170 02}
{277%7051}
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{21, 7272
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A
{25,]2.’15’1}
{25,;%’%}
} o
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{26,5, O}
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{27,8, ,}}
{27,27 '3}
{27,5,
{27,§7 '3
{28,8,
{28’171,%}
{28,5’2,0}
et ]
)2
31}

-
|
-
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= I

Ny
o
=2

N} N = o= NI o=
-
N}
N
> !
N
“|,_.ml <)
|
|
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I

Conj
jugac
y clas
s C-
36 (G1536):
: H-el
emen
ts =
=128

{21,0 1
{217%7 1,03}
{21,171,5}
o 1, 11}
{22,071,2
[22.1. ’01}
{25,1,1
(22,01 13}
{23,07 52
o 1,01}
{23,171’5
o 1
{24,071 "
o ,1,0}
, 1
{24,1 1
o , ,1}
27
{25,0 1’5
o 193
{25,171,5}
o év 1}
{ 7271 3
2,0 1’2
{261 v
{ 51,3
2, 1 1,2
{2675 £1§
{27,071’5
{277% £O§
{27,171’5
o £{3
{28,071,5}
{21 Y
{ 7271 3
2, 1 1’2
o g 1}
7271 3
2

{21,0,3,1
Lo
{21,]2.7270}
{21, 2272
{22,8727 .
{22,172’2
{22,57270}
{22, 1272
{23,87271}
{23,1’2’2
{23,57270}
{23, 1272
{24,87271}
{24’ 172’2
{24’27271}
{24, 72’2}
{25,(2)7270}
o 1203
{25,]2.7270}
{25,3’%’2
{26,8’2’1}
{26, 7272
{26,57271}
(20,33,
{27,87270}
{27, 1723,2
{27,57271}
{27, 1202
{28,87270}
(20201
{28,1:57}}

2’5}

{28,3,5,0}

(A41)
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{2170a07 %}
{217 %7Oa 1}
{217 ]-aOv %}
{217 %7050}
{2270507 %}
{227 %7050}
{227 1507 %}
{227 %705 1}
{2370507 %}
{237 %705 1}
{237 1507 %}
{237 %7050}
{2470a07 %}
{247 %70a0}
{247 ]-aOv %}
{247 %7Oa 1}
{2570a07 %}
{257 %70a0}
{257 ]-aOv %}
{257 %7Oa 1}
{2670507 %}
{267 %705 1}
{267 1507 %}
{267 %7050}
{2770507 %}
{277 %705 1}
{277 1507 %}
{277 %7050}
{2870507 %}
{287 %70a0}
{287 ]-aOv %}
{287 %7Oa 1}

{21,0,3,0}
{21,3.3.3}
{211, 5.1}
{21,3.3,3
{22,0, 5,1}
2,,1,1,0
{22,8.3.3
{23,0,3,0}
{233,533
{231,351}
{23,3,3,3
{24,0,3,0}
{243,533
{24,1,3,1}
{24,3,3,3
{25,0,3,1}
{25,3,3,3
{251, 5,0}
{25,3,3.3}
{26,0, 5,1}
{26,3.3,3
{26,1, 5.0}
{2.3.5.3
{27,0,3,1}
{273,533
{27,1,3,0}
{2.3,3.3
{25,0,3,0}
{2s,3.3.5}
{2s,1,3,1}

3 1 1
{2s,3,3:3

Conjugacy class Cs7 (Gisse): #-elements = 128

{21,0,1, 3}
{21,3,1,0}
{21,1,1, 3}
{21,311}
{22,0,1, 3}
{2:,%,1,1}
{22,1,1,3}
{22,3,1,0}
{25,0,1,3}
{25,4,1,0}
{25,1,1, 3}
{25,3,1,1}
{24,0,1, 3}
{24,311}
{24,1,1, 3}
{24,3,1,0}
{25,0,1,3}
{25,311}
{25,1,1, 3}
{25,310}
{26,0,1, 5}
{26,1,1,0}
{26,1,1,3}
{26,2,1,1}
{27,0,1,3}
{27,4,1,0}
{27,1,1, 3}
{27,3,1,1}
{25,0,1,3}
{25,311}
{2s,1,1, 3}
{2s,3,1,0}

{21,0,3.1}
{21,3.3.3
{21,1,3,0}
{21,3.3.3
{22,0,3.0}
{22,3.3.3
{22,1,3,1}
{22.5.3.3
{25,0,3,1}
{25,333
{2s,1,
{2s,3,
{24,0,
{24, 3,
{24,1,
{24,3,
{25,0,
{25, 1,
{25,1,
{2s,3,
{26,0,
{26, 3.
{26,1,
{26, 2,
{27,0,
{27,1,
{27,1,

{2.3.3.3
{2s,0,3,1}
{25,3.3.3
{2s,1,3.0}

3 3 3
{2s,3,5:3
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A.2. The Group Grgs. In this section, we list all the elements of the space
group Grgs, organized into their 32 conjugacy classes.
Conjugacy class C1 (Gres): # of elements = 1

{11,0,0,0} (A.43)

Conjugacy class Co (Grgs): # of elements = 1
{1:,1,1,1} (A.44)

Conjugacy class C3 (Gres): # of elements = 3
{1,,0,0,1} {1,,0,1,0} {1;,1,0,0} (A.45)

Conjugacy class Cy (Gres): # of elements = 3
{1,,0,1,1} {11,1,0,1} {11,1,1,0} (A.46)

Conjugacy class Cs (Grgs): # of elements = 4

{13930 w338} {13,583} {1.3.3.3) (A.47)
Conjugacy class Cs (Gres): # of elements = 4
{1us5.5) {usds) {(ndss) {530 (A48)
Conjugacy class Cr (Gres): # of elements = 6
{1,0,0,3} {1,,0,0,3} {11,0,5,0} (A.49)

{11705350} {117%7050} {11535070}
Conjugacy class Cs (Grgs): # of elements = 6

{117 5251} {11705271} {115%5170} (ASO)
{117]-;075} {1171a07§} {]-h%a]-vo}

Conjugacy class Cy (Gres): # of elements = 6

{1170517%} {1170517%} {115[%5071} (ASI)
{11715%50} {11715370} {11535071}

Conjugacy class Cio (Gres): # of elements = 6

{Li,5.1,1 {1,151} {1,115} (A.52)

{117]-;1 } {]—17]-;271} {]—hga ) }
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Conjugacy class C11 (Gres): # of elements = 12

{11’072’2} {1170’272} {1170’2’2} {11’07272} {1172
{115%5%50} {117%7%70} {11757055} {11; 3 0 3} {117%

Conjugacy class C12 (Grgs): # of elements = 12

{115%5%51} {117§715§} {117§715:25} {115%5351} {117 5272} {11517255

{11a 72;2} {117]-;272} {]—lvgvévl} {]—lagalv%} {11737]-;3} {11;3;3;1}
(A.54)

0,5} {11,3.0,5}
3,0}

{11,320}
(A.53)

Conjugacy class C13 (Grgs): # of elements = 12

{31a 0,0, 0} {317 0,1, 0} {317 1,0, 0} {317 L1, 0} {327 0,0, 0} {327 0,0, 1}
{32a 1,0, 0} {327 1,0, 1} {337 0,0, 0} {337 0,0, 1} {337 0,1, 0} {337 0,1, 1}
(A.55)
Conjugacy class C14 (Gres): # of elements = 12
{31,0,0,1} {34,0,1,1} {31,1,0,1} {31,1,1,1} {35,0,1,0} {32,0,1,1}
{32,1,1,0} {35,1,1,1} {33,1,0,0} {33,1,0,1} {35,1,1,0} {33,1,1,1}
(A.56)
Conjugacy class Ci5 (Gres): # of elements = 12
{315 ) 270} {31507 2)0} {317 1) 270} {315 17 270} {327 %7050} {327 %705 1}
{32a §a070} {32a %aov ]-} {3370a07 §} {33a070a §} {3370a ]-7 %} {3370a ]-7 %}
(A.57)
Conjugacy class Ci6 (Gres): # of elements = 12
{31a ' 9 1} {31a07 2 1} {317 ]-a 2 1} {31a ]-7 2 1} {327 %7 ]-aO} {327 %7 ]-a 1}
{32a %a ]-7 O} {32a %a ]-7 1} {337 ]-a 07 5} {33a ]-7 Oa 5} {337 ]-a ]-7 %} {337 ]-a 1(;\%5}8)

Conjugacy class C17 (Gres): # of elements = 12

{SIa%aovo} {31a%a170} {317%70 0} {31a%a170} {3270 07%} {3270a07%}

{325 1,0, %} {325 1,0, } {33705 270} {33507 2 1} {33705 2)0} {33705 %7 1}
(A.59)
Conjugacy class Cig (Gres): # of elements = 12

{315%5071} {315%5171} {317%70 1} {31535171} {3270517%} {3270517%}

{3251715%} {32517 ;g} {33715 270} {33517 271} {33715 2)0} {33715%71}
(A.60)
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Conjugacy class Ci9 (Gres): # of elements = 12

{31:2:2:0} {31,5,5,0} {31, 5, 3,0} {31,550} {32,3.0,5} {32,3.0,3}
{325%507%} {327%70;%} {33705 2 2} {335 7272} {3370537%} {33507%5%
(A.61)

Conjugacy class Cao (Gres): # of elements = 12

{315, 3:1} {305,513 {305, 5,11 {31,5, 5.1} {32,5, L5} 32,5, 1,5}
{32,513} {325,131 (801,50} {3,150} {36, 1,505} {301,550
62

Conjugacy class C21 (Gres): # of elements = 24

{31:0,0,3} {31,0,0,3} {31,0,1,5} {31,0,1,3}
{31a170aé} {3171a073} {317]-;175} {31a171a%}
{32a072a0} {3270a2a1} {3270a270} {32a07%a1} (A63)
{32517250} {327 5251} {32715270} {32517351}
{33555070} {33727051} {337é7150} {335%5171}
{35,2,0,0} {33,3,0,1} {33,3,1,0} {3s,3,1,1}
Conjugacy class Caa (Greg): # of elements = 24
{3170’272 {31’072’2} {3170’272 {31’072’2
{31715272 {31517552} {31715272 {31517252
(B b0} (bbl) B30 (B3}
{32v2v§70} {32’2’§’}} {32727270} {32’2727}}
{337%705%} {335%507%} {337%715% {335%7153
{337%705%} {335%507%} {337%715%} {3353715%
Conjugacy class Ca3 (Gres): # of elements = 24
{3,3,0,5} {31,503} {31,545} {31,513
3 1 3 3 3 1 3 3
{317 0’2} {31’ 072} {317 L3 {31’27 ]
{3270’272 {32’072’2 {3270’272 {32’072’2 (A.65)
{327]-;272 {32a172a§ {327]-;272 {32a172a§
{33727270} {33’2’2’ } {3?”%7270} {33’§v2v }
{33727§70} {33’2’§’1} {33727270} {33’27271}



CLASSIFICATION OF ARNOLD-BELTRAMI FLOWS 1031

Conjugacy class C24 (Gres): # of elements = 24

Gui b Bubd ) G Bud i
(b} Budd ) b a ) Bub i)
Gabd i} b d ) B A D b
(ad b b} B b ) (o d 3 8) ad 1)
(nd b} Bodd ) (b 84} (0 d 8
(i b Bodd 8} G d 38 Bad b}

Conjugacy class Cas (Gres): # of elements = 64

{21,0,0,0} {21,0,3,4} {21,0,1,1} {24,0,3,3
{20:2,0.21 {202,530} {20,5, 1,5} {20,5.5,1}
{21,1,0,1} {21,1,3,2} {2y,1,1,0} {21,1,3,4
{20,505 {21,5, 3.1} {21,5, 1,5} {21,5, 5.0}
{22,0,0,0} {22,0,3,3} {22,0,1,1} {22,0,3,1}
{22,305} {22,3,3,0} {22, 5, 1,3} {22,3,3,1}
{25,1,0,1} {25,1,1, 1} {25,1,1,0} {2,,1,3,3
(2308} 2341} 22303 2 dd0) o
{27,0,0,0} {27,0,%,3} {27,0,1,1} {27,0,3,3
{20.3,0.3} {273, 5.1} {275, 1,3} {27,5, 3,0}
{27,1,0,1} {27,1,3,3} {27,1,1,0} {27,1,3,4
{27.2,0.3} {27, 3,5, 0} {27,5, 1,5} {27, 3,3, 1}
{25,0,0,0} {2s5,0,3,3} {25,0,1,1} {25,0,3,4
{253,023 {253, 51} {283, 1,3} {28,530}
{25,1,0,1} {25,1,3,24} {25,1,1,0} {2s,1,3,3}

{287§7Oa§} {28757570} {28a§a17§} {28757571}
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{2170507%}
{217%7050}
21,1,0,2
}217%7(),21%
{2270507%}
{227%70a;-}
2 71507_
{22 3.0 B}
{ 2579, 53}
927,0,0,3
{27 3.0 B}
{ 79 51}
27,1,0, 1
{27 3.0 i}
{ 79 a3}
2,0,0,3
ot
{8727 ) }
{287]-;07%}
{287%7050}

{21,0,0,1}
{21,303}
{21,1,0,0}
{21,2,0.3}
{2,,0,0,1}
{22,303}
{2,,1,0,0}
{22,203}
{27,0,0,1}
{2771 0, 3

{27,1,0, 0}
{27,303}
{25,0,0,1}
{28303}
{2s,1,0,0}
{25,202}

{21507%71}
}21555555}
21a17270
{21525255
{225 7270}
}2%%;%;%}
22) 7271
{22’2’2’3}
2; ) 70
}27 1 21 l}
773793793
{27a]:;7%1713}
{27,3,3,3
{285(1)7%1711}
{28a§a§a§
{28a17%70}

3 1 3
{2s,5.3.5

{21’ 72’2
{20:3,5:1}
{211,533}
{21’2 % 0}
{22,0,5,3}
{223,531}
{221,355}
{22.5,5,0}
{27.0,53.5}
{27’2 % 0}
{27,1,5,3}
{27’2 % 1}
{280,353}
{283,350}
{251,335}
{28’2’2’1}

{2170517%}
{217%7151}
{217]-;17%
{217%7150}
{2270517%}
{227%7]-;?}
2 71517_
{22 3.1 i}
{ 2579, 51}
27,0,1, 1
{27 1.1 i}
{ 79 53}
27,1,1, %
{27 3.1 %}
{ 79 ’1}
2,0,1, 2
b )
{8727 ) }
{287]-;17%}
{287%7151}

Conjugacy class Co7 (Gres): # of elements = 64

{21a07 ]-aO}
{217 2 a §
{215 17 1) 1}
{217 %7 ]-a %
{22507 150}
{227 %7 1) %}
{22a ]-7 ]-a 1}
{227 %7 1) %
{27507 150}
{277 %7 ]-a %
{275 17 1) 1}
{277 %7 1) %
{28a07 ]-aO}
{287 %7 1) %}
{285 17 1) 1}
3 1
{287 2 ]-a 2

Conjugacy class Cag (Gres): # of elements = 64

{21507%50}

1 3 3
{21,3,5:3

{21a17%a1}

3 3 1
{21,5.3.3

{22507 %a 1}

1 3 3
{22,755, 3

{22517350}
{22,323
}2%07%;]:}}
27; 219219
{27a]:;7 23;01}
{27’ 21272
{28507 2)0}
{28’ 27 2’ 2
{28a 72;1}

3 3 1
{2s,5.3.3

{21,0,
{21’2
{21, )
{21,3,
{2,0,
{22’2
{2,,1,
{22’2
{27,0,
{27’2
{27,1,
{27’2
{2s,0,
{28’2
{2s,1,
{2s,3,

O NI = NW O NW = NE = N O NW = W O N
NN NI N NI NN D N NI N N

wlwM'“wlwN"C'Jwlw'\"'“wlwM'“wlwM'“wlw'\"'“wlwl\"@wlw‘\"u

(A.68)

(A.69)
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{2170507%}
{217%7051}
{217]-;07%}
{217%7050}
25,0,0,3
{22 3,0 %}
{ 299 ’1}
2 71507_
{22 3.0 i}
{ 2579, 51}
927,0,0, 1
{27 1.0 i}
{ 79 53}
2:,1,0,3
{27 3.0 %}
{ 79 ’1}
2,0,0,1
{28 .0 B}
{8727 ) }
{287]-;07%}
{287%7051}

{23,0,0,0}
{23303}
{23,1,0,1}
{23.2,0.3}
{24,0,0,0}
{24,303}
{24,1,0,1}
{24:2,0.3
{25,0,0,0}
{25.3,0.3
{25,1,0,1}
{25,303}
{26,0,0,0}
{26302}
{26,1,0,1}
{26203}

{21507 %70}

11 3
{21’2’2’2

{21a17 271}

31 1
{21’2’2’2

{22507 %7 1}

1 1 3
{22,5,3:3

{225 17 %7 0}

3 1 1
{22,5,5:3

{27a07 %7 1}

1 1 3
{27,335

{27a ]-7 %7 O}

3 1 1
{21.3,%:3

{285 ) 270}
{28333

{28a 7271}

3 1 1
{2s,5.3:3

{25.0,5.3
{23’2’2’0}
{23’ 72’2}
{23’2 20 1}
{24,0,5,3}
{243,531}
{241,355}
{24:5,5,0}
{25.0,5. 3}
{25’2 % 0}
{25,1,5,2}
{25’2 % 1}
{26.0,5. 5}
{263,531}
{261,353}
{263,350}

Conjugacy class Cas (Grgs): # of elements = 64

{2170517%}
{217%7150}
2:,1,1,2
}217%71521%
{2270517%}
{227%7]-;?])-}
2 71517_
{22 3.1 %}
{ 2579, 53}
27,0,1, 2
{27 1.1 %}
{ 79 51}
27,1,1, 1
{27 3.1 i}
{ 79 ’3}
2,0,1,3
o)
{8727 ) }
{287]-;17%}
{287%7150}

Conjugacy class Ca9 (Gres): # of elements = 64

{23,0,1,1}
{253,135
{23,1,1,0}
{255,135
{24,0,1,1}
{24,3,1,3}
{24,1,1,0}
{203:1,3
{25,0,1,1}
{253,135
{25,1,1,0}
{253,135
{26,0,1,1}
{26:3:1,3}
{26,1,1,0}
{262.1,3

{21507%51}

1 3 1
{21,5.5:3

{21a 72;0}
{21’2’2’ }

{225 72)0}

1 3 1
{22,535, 3

{225 7[251}
{22’2’2’3}
{27a 72;0}
{27’2’2’2}
{27a172a1}
{27’2’2’2}

{28507 29 }

13 1
{28’2’2’2

{28a ]-7 %,0}

{2s,5.3.3

{25,0,
{23’2
{2;,1,
{23’2
{24,0,
{24’2
{24,1,
{24’2
{2s,0,
{25’2
{25,1,
{25’2
{26,0,
{26’2
{26,1,
{26,3,3,

—_ W O N O NI e W = = O NW O DW= Nl
e v o e N N N N N " N N N N N

I\DI M|C~w|wl\')|®w|wl\')|ww|wl\3|c~w|wM|®w|wmlww|wl0|c~w|wl\3|w

(A.70)

(A.71)
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{2370507%}
{237%7051}
25,1,0,2
}227%7056{
{2470507%}
{247%70a?}
2 71507_
{24 3.0 i}
{ 459 51}
25,0,0, 1
{25 3.0 B}
{ 579 53}
2,1,0, 3
{25 3.0 i}
{ 559 a3}
2,0,0, 3
oot
{6727 ) }
{267]-;07%}
{267%7050}

{23,0,0,1}
{23:3,0.3
{23,1,0,0}
{23203}
{24,0,0,1}
{24,3,0.3}
{24,1,0,0}
{24,203}
{25,0,0,1}
{25303}
{25,1,0,0}
{25.3,0.3
{26,0,0,1}
{26303}
{26,1,0,0}
{26,202}

{235 07 %7 0}

1 1 1
{25,533

{2?” 721713}
{23525255
{245 7270}
{24a%a%a%
{245 7271}
}24’2’2’3}}
25; 7271
{25’2’2’2}
{25a17270}
{25,333
{26507%71}
{26,333
{26a17%70}

3 1 3
{26,5.3:5

{25,033

{25:3:3,1}
{251,335}
{253,350}
{24,0,3,3}
{24,3,3,0}
{241,335}
{243,351}
{25,033}
{25:3.3.1}
{251,335}
{253,350}
{260,335}
{2.3.1,0}
{261,335}
{26’2’2’1}

Conjugacy class Cso (Gres): # of elements = 64

{2370517%}
{237%7150}
{237]-;17%}
{237%7151}
24,0,1, 3
{24 2.1 i}
{ 459, ’3}
2 71517_
{24 3.1 %}
{ 459 53}
25,0,1, 2
{25 1.1 i}
{ 579 51}
25,1,1,1
{25 3.1 %}
{ 5599 ’1}
2,0,1,1
s )
{6727 ) }
{267]-;17%}
{267%7151}

Conjugacy class C31 (Gres): # of elements = 64

{23,0,1,0}
{25,313
{23,1,1,1}
{25,3.1,3}
{24,0,1,0}
{24,3. 1,3}
{24,1,1,1}
{24,3.1,3
{25,0,1,0}
{25,3.1.3
{25,1,1,1}
{25,3.1,5}
{26,0,1,0}
{26,3.1,3}
{26,1,1,1}
{26,5.1.3

{23507 %a 1}

1 3 3
{25,3,5:3

{23a ]-7 %,0}

3 3 1
{25,5.3.3

{24507 %a 1}

1 3 3
{24,535, 3

{24517350}
2 )é)é)l

frd o
5,Y5 99

1 3 3
{25,3:3,5

{25a ]-7 %a 1}

3 3 1
{25,3,5,3

{265 7[250}
{26,5.3.3
{26a 72;1}

3 3 1
{26,5.3:3

{25,0,
{23’2
{2;,1,
{25,3,
{24,0,
{24’2
{24,1,
{24’2
{2s,0,
{25’2
{25,1,
{25’2
{26,0,
{26’2
{26,1,
{26, 3,

O NI = NW = NWw O N O NW = N = Ne O oW
NN NI NN N N N N NI N

wlwM'“wlwN"C'Jwlw'\"'“wlwM'“wlwM'“wlw'\"'“wlwl\"@wlw‘\"u

(A.72)

(A.73)
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Conjugacy class Csa (Grgs): # of elements = 64

{23,0,0,3} {23,0,3,1}  {25,0,1,3} {25,0,3,0}
{23,3,0,0} {231, 3,3} {25,1,1,1} {234,381
{23’1;’07%} {23’:}37%1701} {237?17%} {23a:}37%a13}
{23,2,0,1} {2s5,3,3.5} {25,3,1,0} {25,3,3.3}
{24’0’0’%} {24’07%’1} {2470’17%} {24’07%a0}
{24,4,0,1} {24,1,3,3) {24,4,1,0} {24,181
{24,1,0,2} {24,1,3,0} {24,1,1,1} {24,1,3,1}
{2,3,0,00 {24,311} {2,811} {2,833 )
{2570’07%} {25’0’%79} {257()’17%} {25,07%’1} .
{25,1,0,1} {25, 1,42} {25 1,1,0} {254,314
{25’1’07%} {25’17%71} {2571a17%} {25,17%a0}
{25,2,0,0} {253,111 {2,311} {25533
(260,04} {26.0,3.0} {26,0,1,3} {2,0,%,1}
{26’%70’0} {26’%’%’%} {267%71’1} {263%’%’%
{2671’07%} {26517%71} {2671,1,%} {26;17%50}
{2.2,0,1} {26,3.3,4} {2.,3,1,0} {22 3 3}

A.3. The Group Gosg. In this section, we list all the elements of the space
group Gasg, organized into their 64 conjugacy classes.
Conjugacy class C1 (Gasg) : # of elements = 1

{11,0,0,0} (A.75)
Conjugacy class Co (Gasg): # of elements = 1

{]-laovoa]-} (A76)
Conjugacy class C3 (Gasg): # of elements = 1

{11,0,1,0} (A77)
Conjugacy class C4 (Gasg): # of elements = 1

{1,,0,1,1} (A.78)
Conjugacy class Cs (Gasg) : # of elements = 1

{11,1,0,0} (A.79)
Conjugacy class Cg (Gasg): # of elements = 1

{]-la]-voa]-} (ASO)
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Conjugacy class C7 (Gasg) : # of elements = 1
{115 17 1) O}
Conjugacy class Cg (Gasg) : # of elements = 1
{115 17 1) 1}
Conjugacy class Cy (Gasg): # of elements = 2
{1,0,0,3} {11,0,0,3}

Conjugacy class Cio (Gase): # of elements = 2
{11507%50} {11705%50}

Conjugacy class C11 (Gase): # of elements = 2
{11,0,3,1} {1,,0,3,1}
Conjugacy class C12 (Gase): # of elements = 2
{1,0,1,3} {15,0,1,3}
Conjugacy class C13 (Gase): # of elements = 2
{11,3,0,0} {11,2,0,0}
Conjugacy class C14 (Gase): # of elements = 2
{1,,3,0,1} {1,,3,0,1}
Conjugacy class C15 (Gase): # of elements = 2
{11,310} {11,5,1,0}
Conjugacy class C16 (Gase): # of elements = 2
{111} {1,511}
Conjugacy class C17 (Gase): # of elements = 2
{110,357 {14,1,0,3}
Conjugacy class C1s (Gase): # of elements = 2
{1,1,5,0} {15,1,3,0}
Conjugacy class C19 (Gase): # of elements = 2
{151} {11,351}

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)

(A91)

(A.92)

(A.93)
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Conjugacy class Cao (Gasg): # of elements = 2
{1,,1,1,4} {1,,1,1,2} (A.94)
Conjugacy class Ca1 (Gasg): # of elements = 4
{1170’272} {11’ 72’2} {117 ’272} {11’07%’%} (A.95)
Conjugacy class Caz (Gase) : # of elements = 4
(1504} (03] {1804} {1203} A%
Conjugacy class Ca3 (Gasg): # of elements = 4
(L300} {10320} {10240} {14200 @9
Conjugacy class Ca4 (Gase): # of elements = 4
{11’%’%’3 {11’2’2’2} {11727272} {117%7%7% (A.98)
Conjugacy class Cos (Gasg): # of elements = 4
{lug2 1) {lg 31} {Lde ) {1551 (A.99)
Conjugacy class Cog (Gasg): # of elements = 4
(a3 (hdd) idd) (Wil @
Conjugacy class Ca7 (Gase) : # of elements = 4
(hid) (g wdnd) (iny @

Conjugacy class Cag (Gase): # of elements = 4
{11’ 1,3 2 2} {117 1,3 2 2} {11’ 1,3 2 2} {117 13 2 2 (A.102)

Conjugacy class Cag (Gase): # of elements = 4
{31,0,0,0} {31,0,1,0} {31,1,0,0} {34,1,1,0} (A.103)

Conjugacy class Cso (Gase): # of elements = 4

{3170’071} {3170a171} {317]-;071} {317]-;171} (A.104)
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Conjugacy class C31 (Gase): # of elements = 4

{31,0,3,0} {31,0,2,0} {3:,1,1,0} {31,1,2,0}
Conjugacy class Cs2 (Gase): # of elements = 4

{3170a%71} {31a07%71} {31a17%a1} {3171’%71}
Conjugacy class Cs3 (Gase): # of elements = 4

{31,3,0,0} {31,%4,1,0} {31,2,0,0} {31,3,1,0}
Conjugacy class Csa (Gase): # of elements = 4

{31,2,0,1} {31,3,1,1} {31,2,0,1} {31,2,1,1}
Conjugacy class Css (Gase) : # of elements = 4

{81,53.3,0} {31,3.3.0} {31.3,3.0} {31.5.3,0}
Conjugacy class Css (Gase) : # of elements = 4

{31331} {31331} {81,331} {31,331}
Conjugacy class Cs7 (Gase) : # of elements = 4

{3270a070} {3270a071} {327]-;070} {3271’071}

Conjugacy class Csg (Gase): # of elements = 4
{3270a070} {3270a071} {327]-;070} {3271’071}

Conjugacy class Csg (Gase): # of elements = 4
{32,0,1,0} {32,0,1,1} {32,1,1,0} {35,1,1,1}
Conjugacy class Cao (Gase): # of elements = 4
{82,0,1,5} {32,0,1,5} {32,115} {32,1,1,5}
Conjugacy class Ca1 (Gase): # of elements = 4
{32,3,0,0} {32,3,0,1} {35,3,0,0} {35,5,0,1}

Conjugacy class Cy2 (Gase): # of elements = 4

{32a%a07%} {327%70a%} {32a%a07%} {327%70a%}

(A.105)

(A.106)

(A.107)

(A.108)

(A.109)

(A.110)

(A.111)

(A.112)

(A.113)

(A.114)

(A.115)

(A.116)
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Conjugacy class Cy3 (Gase): # of elements = 4
{327%7]-;0} {32a%a171} {32a%a170} {327%7]-;1}
Conjugacy class Cqyq (Gase): # of elements = 4
{32a%a17%} {327%7]-;%} {32a%a17%} {327%7]-;%
Conjugacy class Cy5 (Gase): # of elements = 4
{33705070} {33705071} {33705170} {33705171}
Conjugacy class Cas (Gase): # of elements = 4
{3370a07%} {3?»070;%} {33a071 } {337 ) 75
Conjugacy class Cy7 (Gase): # of elements = 4
{337 5270} {33507271} {33507250} {33705371}
Conjugacy class Cyg (Gase): # of elements = 4
{33a 72;2} {3370a272} {33a072a2} {337 a272
Conjugacy class Cq9 (Gase): # of elements = 4
{337]-;070} {337]-;071} {337]-;170} {3371’171}
Conjugacy class Cso (Gase): # of elements = 4
{3371507%} {33517053} {3351715%} {3371517%
Conjugacy class Cs1 (Gase): # of elements = 4
{337]-;%70} {3?»17%71} {3&17%;0} {337]-;%71}
Conjugacy class Cs2 (Gase): # of elements = 4

{33’172’2} {3371’272} {33’172’2} {337 ’272}

Conjugacy class Cs3 (Gase) : # of elements = 8

{3170a07%} {31a070a%} {31a071a%} {3170a17%}
{317]-;07%} {31a170a%} {31a171a%} {317]-;17%

(A.117)

(A.118)

(A.119)

(A.120)

(A.121)

(A.122)

(A.123)

(A.124)

(A.125)

(A.126)

(A.127)
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Conjugacy class Csy (Gase): # of elements = 8

{317 a27 2} {31’072’ 2} {31’0’ 2’ 2} {31’0’ 2’5 (A.128)
{317 5272} {31517252} {3171’272} {31’1’2’2

Conjugacy class Cs5 (Gase) : # of elements = 8

(31.2.0,5} 305,03} (30504 {30 5.0.8) A 120)
31,2,0,31 {31,2,0 31,2,1,41 {3,,3,1,2 '
{1727 ’2}{ L 72}{ 1727 ’2}{ gy 3

Conjugacy class Cse (Gase): # of elements = 8

{31727272} {31727573} {31’§’g’é} {31’§’% %} (A130)
{3333 (30333 Busdsr 815530
Conjugacy class Cs7 (Gase) : # of elements = 8
{3270a270} {32a07271} {32a072a0} {3270a%71} (A 131)
{327 a270} {32a17271} {32a172a0} {327]-;%71}
Conjugacy class Css (Gase): # of elements = 8
{32507252 {32705573 {32507252 {32705272 (A132)

{32a172a2} {327]-;272} {32a172a2} {327]-;272

Conjugacy class Csg (Gase): # of elements = 8

{35,3,23,01 {353, 1,1} {32,3.8,0} {3.,1.3.1} (A.133)
{32525250} {32’2’2’1} {32’2’2’0} {32’272’ }

Conjugacy class Ceo (Gase): # of elements = 8

{32727272} {32757573} {32’§’2’2} {32’2’2’2} (A.134)
{82,533} {32353} {32553} {32.3.3.3}

Conjugacy class Ce1 (Gase): # of elements = 8
{337%70a0} {3?»%;071} {3&%;170} {337%7]-;1}

A.135
{337%70a0} {3?»%;071} {33a%a170} {337%7]-;1} ( )
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Conjugacy class Cga (Gase): # of elements = 8

{33202} {35205} (3505} {35213 (A.136)
{3353507%} {337%705%} {3353517%} {33’%’1’%

Conjugacy class Cgs (Gase): # of elements = 8

{33525%50} {33727§71} {33525350} {3372725 } (A.137)
(33000 8300} {33300 {33.31)

Conjugacy class Cgy (Gase): # of elements = 8

{337%7%7é} {33727272} {33’;’%’é} {33’2’[2’ } (A138)
{33232} {3s.2,3:2} {3332} {3333}

A.4. The Group Giss. In this section, we list all the elements of the space
group Giag, organized into their 56 conjugacy classes.
Conjugacy class C1 (Gias): # of elements = 1

{11,0,0,0} (A.139)

Conjugacy class Co (Gias): # of elements = 1

{11,0,0,3} (A.140)
Conjugacy class Cs (Giag): # of elements = 1

{11,0,0,1} (A.141)
Conjugacy class C4 (Gias): # of elements = 1

{1,,0,0,3} (A.142)
Conjugacy class Cs (Giag): # of elements = 1

{11,0,1,0} (A.143)
Conjugacy class Cg (G1as): # of elements = 1

{11,0,17% (A.144)
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Conjugacy class C7 (Gias): # of elements = 1
{11,0,1,1}

Conjugacy class Cg (Gias): # of elements = 1
{11,0,1, 3}

Conjugacy class Cy (G1as): # of elements = 1

{14,1,0,0}
Conjugacy class C19 (Gias): # of elements = 1
{11:1,0, 3}
Conjugacy class C11 (Gias): # of elements = 1
{14,1,0,1}
Conjugacy class C12 (Giag): # of elements = 1
{11,1,0, 3}
Conjugacy class Ci3 (Gias): # of elements = 1
{11,1,1,0}
Conjugacy class C14 (Gias): # of elements = 1
{lu 11,5}
Conjugacy class Ci5 (Gias): # of elements = 1
{1:,1,1,1}
Conjugacy class C16 (Gias): # of elements = 1
{1,113}
Conjugacy class C17 (Giag): # of elements = 2

{11,0,4,0} {11,0,3

[V}
o
—

I
[\

Conjugacy class Cig (Gias): # of elements

{]-laOv%v%} {]—lvoa%a%}

(A.145)

(A.146)

(A.147)

(A.148)

(A.149)

(A.150)

(A.151)

(A.152)

(A.153)

(A.154)

(A.155)

(A.156)
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Conjugacy class Ci9 (G12s): # of elements = 2
{11,0,3,1} {1.,0,3,1}
Conjugacy class Cao (G12s): # of elements = 2
{110,533} {11,035
Conjugacy class Co1 (Gi2s): # of elements = 2
{11,3,0,0} {11,3,0,0}
Conjugacy class Caz (G12s): # of elements = 2
{11,3,0,5} {11,3,0.3}
Conjugacy class Caz (G1as): # of elements = 2
(1301} {1201)
Conjugacy class Cay (G1ag): # of elements = 2
(50.3) (n303)
Conjugacy class Cas (G1ag): # of elements = 2
{11,330} {11,3,3,0}
Conjugacy class Cag (G12s): # of elements = 2
{232} {1n2.3.3}
Conjugacy class Co7 (G12s): # of elements = 2
{1n3:31) {1,331}
Conjugacy class Cag (G1as): # of elements = 2
{lug 330 {1,533}
Conjugacy class Cag (G12s): # of elements = 2
(51,0} {1,410}

Conjugacy class Cso (Giag): # of elements = 2

{]-la%a]-v%} {117%7]-;%}

(A.157)

(A.158)

(A.159)

(A.160)

(A.161)

(A.162)

(A.163)

(A.164)

(A.165)

(A.166)

(A.167)

(A.168)
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Conjugacy class C31 (Gias): # of elements = 2
(b1t} {11
Conjugacy class Cs2 (G1as): # of elements = 2
{lug. 13 {1313}
Conjugacy class Css (Gi2s): # of elements = 2
{11,3,2,0} {11,2,3.0}
Conjugacy class C34 (G1as): # of elements = 2
{lng: 830 {833}
Conjugacy class Css (G1as): # of elements = 2
(b1 (n3d)
Conjugacy class Css (G12s): # of elements = 2
{lug: 230 {333
Conjugacy class Cs7 (Gi2s): # of elements = 2
{11,1,3,0} {11,1,3,0}
Conjugacy class Csg (Gias): # of elements = 2
{luhg 3 {33
Conjugacy class Csg (G12s): # of elements = 2
(1h1) {112
Conjugacy class Cqo (G12s): # of elements = 2
{1n1,3.3) {1,133}
Conjugacy class Cq1 (G1ag): # of elements = 4
{31,0,0,0} {31,0,1,0} {31,1,0,0} {34,1,1,0}

Conjugacy class Caz (G12g): # of elements = 4
{3170a07%} {31a071a%} {31a170a%} {317]-;17%

(A.169)

(A.170)

(A.171)

(A.172)

(A.173)

(A.174)

(A.175)

(A.176)

(A.177)

(A.178)

(A.179)

(A.180)
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Conjugacy class Cy3 (G1ag): # of elements = 4
{31,0,0,1} {31,0,1,1} {31,1,0,1} {34,1,1,1}
Conjugacy class Cqyq (G12g): # of elements = 4
{3,003} {31,0.1,3} {3,,1,0.3} {3,,1,1,5
Conjugacy class Cy5 (G1ag): # of elements = 4
{31,0,3,0} {31,0,3,0} {31,1,5,0} {31,1,3,0}
Conjugacy class Cqs (G12g): # of elements = 4
{31’072’§ {3170’272 {31’172’2} {317 ’272}
Conjugacy class Cy7 (G1ag): # of elements = 4
{3,051} {310,351} {31,531} {311,531}
Conjugacy class Cyg (G1ag): # of elements = 4
{31’07 PR 2} {3170’ 20 2} {31’17 PR 2} {317 ) 2 %}
Conjugacy class Cq9 (G12g): # of elements = 4
{31,3,0,0} {31,3,1,0} {31,3,0,0} {31,5,1,0}
Conjugacy class Cso (Giag): # of elements = 4
{3,303} Bua bt 803050 {81315
Conjugacy class Cs1 (Gi2g): # of elements = 4
{31,2,0,1} {31,3.1,1} {31,2,0,1} {31,2,1,1}
Conjugacy class Cs2 (G1ag): # of elements = 4
{3,203} Buy 3} {80203 {81313}
Conjugacy class Css (Gi2g): # of elements = 4
{3,5:2.0) {31,530} {31,330} {31,3,3.0}
Conjugacy class Csy (G12g): # of elements = 4
{33530 Bundal (30353 813.3.3)
Conjugacy class Css (Giog): # of elements = 4
{31’ 27 %)1} {317 §7 371} {31’ 27 2’1} {317 27 2’ }
Conjugacy class Csg (G12g): # of elements = 4

{3,533 (30332 Bussdl 81553

(A.181)

(A.182)

(A.183)

(A.184)

(A.185)

(A.186)

(A.187)

(A.188)

(A.189)

(A.190)

(A.191)

(A.192)

(A.193)

(A.194)
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A.5. The Group Ggg. The group Gy is Abelian. Hence there are just as
many conjugacy classes as there are elements, every conjugacy class containing
just one element. For this reason it suffices to list the 64 elements, which are
displayed below:

{1,,0,0,0}  {15,0,0,%4} {11,0,0,1}  {1,,0,0,3}
{11507270} {11705252 {1150725 } {11705272
{11507 50} {117051 B {11705 71} {11705175}
{11507%70} {11705252 {11507351} {11705272
{115%50 0} {117_ 0)5} {115%50 1} {11757055}
{]-lagaga } {11727§7é {]—lagaga } {117%7%a%
{]-la%a]-vo} {]—1727]-;% {]-h%a]-v]-} {117%7]-;%
{]-la%a%ao} {]-lvgvgvé {]—la%a%al} {117%73;% (A195)
{1,,1,0,0}  {1:,1,0,3} {1y,1,0,1} {1,,1,0,3
{11517270} {11715252 {11517251} {11715272
{11517 50} {117151 5 {11715 71} {117 72}
{]-la]-v%vo} {]—17]-;2;2 {]-h]-v%a]-} {117]-;272
{12,004 {11,5,0,3} {11,3,0,1} {11757 3}

{13,530} {1353} S
{1,3.1.0} {1,315} {1311} {1L.3.1.3}
{1,350} {1,333} {1,531} {1,353}
Abstractly the group Ggy is isomorphic to Zy X Zy X Zy.
A.6. The Group Gigo. In this section, we list all the elements of the space

group Gigo, organized into their 20 conjugacy classes.
Conjugacy class C1 (Gig2): # of elements = 1

{11’2’2’ } {1

{11,0,0,0} (A.196)

Conjugacy class Co (Gig2): # of elements = 1
{14,1,1,1} (A.197)

Conjugacy class C3 (Gig2): # of elements = 3
{1,,0,0,1} {1,,0,1,0} {1,,1,0,0} (A.198)
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Conjugacy class Cy (G1g2): # of elements = 3
{11507151} {11517051} {11517150}

Conjugacy class C5 (Gig2): # of elements = 3
{31,0,0,0} {32a070a0} {33a070a0}

Conjugacy class Cg (G1g2): # of elements = 3
{31,0,0,1} {32a071a0} {33a170a0}

Conjugacy class C7 (Gio2): # of elements = 3
{31517150} {32517051} {33507151}

Conjugacy class Cg (G1g2): # of elements = 3
{31517151} {32517151} {33517151}

Conjugacy class Cy (G1g2): # of elements = 6

{31,0,1,0} {31,1,0,0} {32a070a1}
{32a170a0} {33a070a1} {33a071a0}

Conjugacy class C1o (Gig2): # of elements = 6

{31;071;1} {31,1,0,1} {32a071a1}
{32a171a0} {33a170a1} {33a171a0}

Conjugacy class C11 (Gig2): # of elements = 12
{41a070a0} {41a071a1} {42a070a0}
{42a071a1} {4?”070;0} {4?”171;0}
{44507050} {44517051} {45507050}
{45517051} {46507050} {46517150}

Conjugacy class Ci2 (G1g2): # of elements = 12
{41507051} {41507150} {42507051}
{42507150} {43507150} {43517050}
{44a070a1} {44a170a0} {45a070a1}
{45a170a0} {46a071a0} {46a170a0}

(A.199)

(A.200)

(A.201)

(A.202)

(A.203)

(A.204)

(A.205)

(A.206)

(A.207)
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Conjugacy class C13 (G1g2)

{41,1,0,0}
{42,1,1,1}
{44,0,1,0}
{45,1,1,1}

Conjugacy class C14 (G192)

{41,1,0,1}
{42,1,1,0}
{44,0,1,1}
{45,1,1,0}

Conjugacy class C15 (G1g2)

{51,0,0,0}
{52,1,0,1}
{54,0,0,0}
{55,0,1,1}

Conjugacy class C16 (G192)

{51,0,0,1}
{52,1,1,1}
{54,0,0,1}
{55,1,1,1}

Conjugacy class C17 (G1g2)

{51,0,1,0}
{52,1,0,0}
{54,0,1,0}
{55,0,1,0}

: # of elements = 12

{41,1,1,1} {42,1,0,0}
{43,0,0,1} {45,1,1,1}
{44,1,1,1} {45,0,1,0}
{46,0,0,1} {4¢,1,1,1}

: # of elements = 12

{41,1,1,0} {42,1,0,1}
{45,0,1,1}  {43,1,0,1}
{44,1,1,0} {45,0,1,1}
{46,0,1,1} {44,1,0,1}

: # of elements = 12

{51,1,1,0} {5,0,0,0}
{53,0,0,0} {53,1,0,1}
{54,1,1,0} {55,0,0,0}
{56,0,0,0} {56,0,1,1}

. # of elements = 12

{51,1,1,1} {52,0,1,0}
{53,0,1,0} {53,1,1,1}
{54,1,1,1} {55,1,0,0}
{56,1,0,0} {56,1,1,1}

: # of elements = 12

{51,1,0,0} {52,0,0,1}
{53,0,0,1} {53,1,0,0}
{54,1,0,0} {55,0,0,1}
{56,0,0,1} {56,0,1,0}

(A.208)

(A.209)

(A.210)

(A211)

(A.212)
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Conjugacy class Cig (G1g2): # of elements = 12

{51,0,1,1} {51,1,0,1} {52,0,1,1}
{52,1,1,0} {53,0,1,1} {53,1,1,0}
{54,0,1,1} {54,1,0,1} {55,1,0,1}
{55,1,1,0} {56,1,0,1} {56,1,1,0}

(A.213)

Conjugacy class Ci9 (G1g2): # of elements = 32

{21,0,0,0} {27,0,1,1} {24,1,0,1} {24,1,1,0}
{22,0,0,0} {25,0,1,1} {22,1,0,1} {25,1,1,0}
{25,0,0,0} {25,0,1,1} {23,1,0,1} {25,1,1,0}
{24,0,0,0} {24,0,1,1} {24,1,0,1} {24,1,1,0}
{25,0,0,0} {25,0,1,1} {25,1,0,1} {25,1,1,0}
{26,0,0,0} {26,0,1,1} {26,1,0,1} {26,1,1,0}
{27,0,0,0} {27,0,1,1} {27,1,0,1} {27,1,1,0}
{25,0,0,0} {25,0,1,1} {2s,1,0,1} {2s,1,1,0}

(A.214)

Conjugacy class Cap (Gig2): # of elements = 32

{21,0,0,1} {21,0,1,0} {24,1,0,0} {29,1,1,1}
{22,0,0,1} {22,0,1,0} {22,1,0,0} {25,1,1,1}
{23,0,0,1} {25,0,1,0} {25,1,0,0} {25,1,1,1}
{24,0,0,1} {24,0,1,0} {24,1,0,0} {24,1,1,1}
{25,0,0,1} {25,0,1,0} {25,1,0,0} {25,1,1,1}
{26,0,0,1} {26,0,1,0} {26,1,0,0} {26,1,1,1}
{27,0,0,1} {27,0,1,0} {27,1,0,0} {2,1,1,1}
{28,0,0,1} {2s,0,1,0} {2s,1,0,0} {2s,1,1,1}

(A.215)

A.7. The Group GFigs. In this section, we list all the elements of the space
group GFi92, organized into their 20 conjugacy classes.
Conjugacy class C1 (GF192): # of elements = 1

{11,0,0,0} (A.216)
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Conjugacy class Co (GF192):

Conjugacy class C3 (GF192):

{11,0,0,1}

Conjugacy class C4 (GF192):

{11,0,1,1}

Conjugacy class Cs (GF192):

{31,0,0,1}

Conjugacy class Cs (GF192):

{31,0,0,0}

Conjugacy class C7 (GF192):

{31,1,1,1}

Conjugacy class Cg (GF192):

{31,1,1,0}

Conjugacy class Cy (GF192):

{31,0,1,1}
{3,,1,1,1}

# of elements = 1
{1:,1,1,1}
# of elements = 3

{1:,0,1,0} {14,1,0,0}
# of elements = 3
{11,1,0,1} {14,1,1,0}
# of elements = 3
{32,1,1,0} {3s,1,1,1}
# of elements = 3
{32,1,0,0} {35,0,1,1}
# of elements = 3
{32,0,1,1} {35,1,0,0}
# of elements = 3
{32,0,0,1} {35,0,0,0}
# of elements = 6

{31,1,0,1} {32,0,1,0}
{33517051} {33517150}

Conjugacy class C1o (GF192): # of elements = 6

{31,0,1,0}
{32,1,0,1}

(31,1,0,0} {35,0,0,0}
{33507051} {33507150}

Conjugacy class C11 (GF192): # of elements = 12

{417%7050} {417%7151} {425%5070} {425%5
{4370a07%} {437]-;17%} {44a%a%a%} {44a%a%a%}
{457%7%7%} {457%7%7%} {46a070a%} {46a171a%

1,1}

(A.217)

(A.218)

(A.219)

(A.220)

(A.221)

(A.222)

(A.223)

(A.224)

(A.225)

(A.226)
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Conjugacy class C12 (GF192): # of elements = 12

{417%70a1} {417%7]-;0} {42a§a0 1} {42;3; 70}
{43.0,1,3} {451,053} {48,332} {403,353}
{457%7%7%} {457%7%7%} {46507152} {46517053}

Conjugacy class C13 (GF192): # of elements = 12

{417 ,0 O} {41727 51} {425 070} {425%5171}
{43,0,0.5} {45, 1,1,5} {44,3.3.5} {44,3,5,3
{452,523} {453:3:3) {46,005} {46115

Conjugacy class C14 (GF192): # of elements = 12
{417370 1} {41737]-;0} {42a%a0 1} {42a%a170}

{43705172} {43715072} {44525252} {44535%5%
{457é7272} { 5737373} {46507152} {4651705%}

Conjugacy class C15 (GF192): # of elements = 12

{61,0,0,3} {51,113} {52,3.5,5} {52.3.3:3
{533 3:5) {55,5:2) {54,00,3} {5411, 3}
{557270a1} {55727]-;0} {56a 071} {56a%a170}

Conjugacy class C16 (GF192): # of elements = 12

{500,035} {3115} {52,5.5.3) {523,335}
{53.2,3.2} {55.2,3.2} {540,053} {54113
{557270a1} {55737]-;0} {56a2a071} {56a2a170}

Conjugacy class C17 (GF192): # of elements = 12

{5170a1 1} {517]-;07%} {52;;3;%} {52;2;2;3}
{53727272} {53737%7%} {54a071a2} {54a170a2
{55727050} {55757151} {56535070} {56535171}

Conjugacy class Cig (GF192): # of elements = 12

{5,015} {50105} {52.3,5.3} {523,335}
{53727272} {537%7%7%} {54a071a2} {54a170a2}
{557%70a0} {557%7]-;1} {56a%a070} {56a%a171}

(A.227)

(A.228)

(A.229)

(A.230)

(A.231)

(A.232)

(A.233)
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Conjugacy class C19 (GF192): # of elements = 32

{2,220} {20,531} {20231} {20,330}
{22’2’2’0} {227§7271} {22’2’2’ } {227272’0}
{23’ 7%’% {2370’272 {23’172’2 {2371’275
{24,0.5.3} {24,033} {24153} {2.1.3.3} (A234)
{250,335} {250,353} {2:1,5,3} {2,133
{26’072’2 {2670’272 {26’172’2 {2671’272
2rd i1} {2nh 30} {23000 {2830)
{26,351} {28,530} {26,350} {23,531}

Conjugacy class Coo (GF192): # of elements = 32

{2152525 } {21757270} {2152525 } {2172725 }
{225%5%51} {227%7%70} {225%5%50} {227%7%51}
{23a072a2 {2370a27§ {23a172a§ {2371a272
{24a072a2 {247 a§7§} {24a172a§ {247 a§7§} 0\235)
{25a072a2 {2570a272 {25a172a2 {2571a272
{26507252 {26705272 {26517252 {26715272
{203,530} {2n.3.5.1} {25,531} {27.5.3.0}
{28’2’2’0} {287§7271} {28’2’2’ } {287272’0}
A.8. The Group Ohyg. In this section, we list all the elements of the space
group Ohyg, organized into their 10 conjugacy classes that, in this case, are
arranged according to the order which is customary in crystallography for the

extended octahedral group.
Conjugacy class C1 (Ohyg): # of elements = 1

{14,0,0,0} (A.236)
Conjugacy class Co (Ohys): # of elements = 8

{2170a070} {2270a070} {2370a070} {2470’070}
{2570a070} {2670a070} {2770a070} {2870’070}

(A.237)
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Conjugacy class C3 (Ohyg): # of elements = 3
{31507050} {32507050} {33507050}

Conjugacy class C4 (Ohys): # of elements = 6

{41507050} {42507050} {43507050}
{44a070a0} {45a070a0} {46a070a0}

Conjugacy class Cs (Ohyg): # of elements = 6

{51a070a0} {52a070a0} {5?”070;0}
{54507050} {55507050} {56507050}

Conjugacy class Cg (Ohyg): # of elements = 1
{115 17 1) 1}
Conjugacy class C7 (Ohys): # of elements = 8

{21715171} {22715171} {23715171} {24715171}
{257]-;171} {267]-;171} {277]-;171} {2871’171}
Conjugacy class Cs (Ohyg): # of elements = 3
{31517151} {32517151} {33517151}

Conjugacy class Co (Ohys): # of elements = 6

{41517151} {42517151} {43517151}
{44;17151} {45517151} {46517151}

Conjugacy class C19 (Ohys): # of elements = 6

{51a171a1} {52a171a1} {5?”171;1}
{54a171a1} {55a171a1} {56a171a1}

(A.238)

(A.239)

(A.240)

(A.241)

(A.242)

(A.243)

(A.244)

(A.245)

A.9. The Group GSy4. In this section, we list all the elements of the

Conjugacy class C1 (GSa4): # of elements = 1
{11,0,0,0}

space group GSa4, organized into their 5 conjugacy classes that, in this case, are
arranged according to the order which is customary in crystallography for the
proper octahedral group.

(A.246)
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Conjugacy class Co (GSa4): # of elements = 8

{21;3;;;1} {22757371} {23a172a2} {2470a272
{25a172a2} {2670a272} {27a§a2a0} {287272a0}

Conjugacy class C3 (GSa4): # of elements = 3
{31,1,1,1} {3,,0,1,1} {33,1,0,0}
Conjugacy class C4 (GSa4): # of elements = 6
{4,351} {42,5, 1,1} {45,1,1,5}
{4333} {45333} {460,035}
Conjugacy class Cs (GSa4): # of elements = 6

{51’07 ’2} {52’2’272} {53’2’2’2
{54;17055} {55555070} {565%5070}

(A.247)

(A.248)

(A.249)

(A.250)

A.10. The Group GP24. In this section, we list all the elements of the space

group GPay4, organized into their 8 conjugacy classes.

Conjugacy class C1 (GPay4): # of elements = 1
{115 07 Oa O}

Conjugacy class Co (GPay): # of elements = 1
{11a171a1}
Conjugacy class C3 (GPay4): # of elements = 3
{31,0,0,1} {32a071a0} {33a170a0}
Conjugacy class C4 (GPa4): # of elements = 3
{31517150} {32517051} {33507151}
Conjugacy class Cs (GPay4): # of elements = 4
{2170a071} {2270a170} {2771a070} {2871’171}
Conjugacy class Cg (GPay4): # of elements = 4
{21715170} {22715071} {27705171} {28705070}
Conjugacy class C7 (GPa4): # of elements = 4
{2370a071} {2470a170} {2571a070} {2671’171}

Conjugacy class Cs (GPay4): # of elements = 4
{2371a170} {2471a071} {2570a171} {2670a070}

(A.251)

(A.252)

(A.253)

(A.254)

(A.255)

(A.256)

(A.257)

(A.258)
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A.11. The Group GKo,. In this section, we list all the elements of the space
group GKay4, organized into their 8 conjugacy classes.
Conjugacy class C1 (GKaq): # of elements = 1

{11,0,0,0} (A.259)

Conjugacy class Co (GKa4): # of elements = 1
{11,1,1,1} (A.260)

Conjugacy class C3 (GKaq): # of elements = 3
(31,0,1,1} {3,,0,1,0} {35,1,1,0} (A261)

Conjugacy class C4 (GKaq): # of elements = 3
{31,1,0,0} {32,1,0,1} {35,0,0,1} (A.262)

Conjugacy class Cs (GKaq): # of elements = 4
(20300 {hh0) 2nhd) (bdo) (2w

Conjugacy class Co (GKaq): # of elements = 4
{20821} {23,530} {20.2,3,0} {25,331} (A.264)

Conjugacy class C; (GK24): # of elements = 4
(20003} 20053} {2133} {albl} A2

Conjugacy class Cs (GKaq): # of elements = 4
{25,1,4,3) {24,1,3,3) {250,143} {20,332 (A.266)

A.12. The Group GSss. In this section, we list all the elements of the space
group GS32, organized into their 14 conjugacy classes.
Conjugacy class C1 (GS32): # of elements = 1

{11,0,0,0} (A.267)
Conjugacy class Co (GS32): # of elements = 1

{1,,0,1,1} (A.268)
Conjugacy class C3 (GS3z2): # of elements = 1

{33,0,0,0} (A.269)
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Conjugacy class C4 (GS32): # of elements = 1
{3?» 07 ]-a 1}

Conjugacy class Cs (GS32): # of elements = 2
{11a170a1} {11a171a0}

Conjugacy class Cg (GS32): # of elements = 2
{31,0,0,0} {32a070a0}

Conjugacy class C7 (GSs2): # of elements = 2
{31507151} {32507151}

Conjugacy class Cs (GS32): # of elements = 2
{31517051} {32517150}

Conjugacy class Co (GS32): # of elements = 2
{31517150} {32517051}

Conjugacy class C19 (GS32): # of elements = 2
{33517051} {33517150}

Conjugacy class C11 (GSs2): # of elements = 4
{41,0,0,1} {41,0,1,0}
{42507051} {42507150}

Conjugacy class Ci2 (GS32): # of elements = 4
{41a170a0} {41a171a1}
{42a170a0} {42a171a1}
Conjugacy class C13 (GS32): # of elements = 4
{55a070a1} {55a071a0}
{56507051} {56507150}
Conjugacy class C14 (GS32): # of elements = 4

{55517050} {55517151}
{56517050} {56517151}

(A.270)

(A.271)

(A.272)

(A.273)

(A.274)

(A.275)

(A.276)

(A.277)

(A.278)

(A.279)

(A.280)
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A.13. The Group GK3,. In this section, we list all the elements of the space
group GK3o, organized into their 14 conjugacy classes.
Conjugacy class C1 (GKsz): # of elements = 1

{11,0,0,0} (A.281)

Conjugacy class Co (GK3z): # of elements = 1
{1,,1,0,1} (A.282)

Conjugacy class C3 (GKsz): # of elements = 1
{35,0,1,1} (A.283)

Conjugacy class C4 (GKs2): # of elements = 1
{32,1,1,0} (A.284)

Conjugacy class Cs (GKsa): # of elements = 2
{1,,0,1,1} {1;,1,1,0} (A.285)

Conjugacy class C¢ (GKs2): # of elements = 2

{31,0,0,0} {35,0,1,1} (A.286)

Conjugacy class C7 (GKsz): # of elements = 2
(3,,0,1,1}  {33,1,0,1} (A.287)

Conjugacy class Cg (GKsz): # of elements = 2
{31,1,0,1} {33,1,1,0} (A.288)
Conjugacy class Co (GKs2): # of elements = 2

(3,,1,1,0}  {33,0,0,0} (A.289)
Conjugacy class C1o (GKsa): # of elements = 2
{32,0,0,0} {32,1,0,1} (A.290)

Conjugacy class C11 (GKsa): # of elements = 4

113 311
{447?737?} {44737373} (A.291)
{45757575} {45757575
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Conjugacy class C1o (GK3za): # of elements = 4
13 1 33 3
{4.2.5:2} {403,5.3} (A292)
113 311 :
{45,3.3.3} {43 3.3}
Conjugacy class C13 (GKsza): # of elements = 4
113 311
{52:3,5:5} {52:3,3:3} (A293)
{5 13 l} {5 3 3 §} '
3)9797 9 3)92797 9
Conjugacy class C14 (GK3zz): # of elements = 4

{5333} {523.3.9) (A.294)

{832,531 {53,333

B. CHARACTER TABLES OF THE
CONSIDERED DISCRETE GROUPS

In this section we present the results for the irreducible representations of
the various groups listed in Sec. A and we display the character tables of each of
them. As explained in the main text, the basis to obtain such results has been the
implementation in a series of purposely written MATHEMATICA codes of the
algorithm described in Subsubsecs.5.3.1 and 5.3.2.

B.1. Character Table of the Group Gi536. The big ambient group Gis3s
has 37 conjugacy classes and therefore 37 irreducible representations that are
distributed according to the following pattern:

a) 4 irreps of dimension 1, namely D1, ..., Dy,
b) 2 irreps of dimension 2, namely Ds, ..., Dg,
¢) 12 irreps of dimension 3, namely Dy, ..., Dis,
d) 10 irreps of dimension 6, namely D7, ..., Dag,
e) 3 irreps of dimension 8, namely Doy, ..., D31,
f) 6 irreps of dimension 12, namely Dso, ..., D37.

The corresponding character table that we have calculated with the procedures
described in the main text is displayed below. For pure typographical reasons
we were forced to split the character table in two parts in order to fit it into
the page.
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(B.1)

C3 C4 C5 Cs C7 Cg Cg C1o C11 C12 Ci13 C14 C15 C16 Ci17 C1s

Cy Ca

-1 -1 -1

—1

—-11

-1 -1-11

-1 -1 -1

—1

—-11

-1 -1-11

-2 -2 =2

-2

-2 2
3 3 3 3
3 3 3 3

-2 -2 -22

-1 -1 -1 -1 -1 -1 -1

-1

3
3
3
3
3
3
3
3
3
3
3
3
6
6
2

3 3
3 3
3 3

-1 -1 -1 -1 -1 -1 -1 -1

3
3

-1

-3 -11

-1

-3 -11

-1 -1

-1

-3 -11

-1
3
3

-1

-1

-3 -11

-1 -1 -1 -1

-1-1-13 -1

-1 -13

3
3
3
3
3
3

-1 -1 -1 -1

-1 -1-13 -1

-1 -13

-1 -1

-1

-1

-1

-1 -1-1

-1 -13

-1 -1

-1

-1

-1

-1 -1-1

-1 -13

-1 -1 -1

-1

-33

-3 -3-33

1

-1 -1 -1

-1

-33

-3 -3-33

-2 -2 -2 -2 2 -2

—2

—6 —2 2

-2 -2 -2 =2

-2

-2 -26 -2 -2-2

6

—24 —-40

—6

—24 —-40

2

—6

-2 2

-2

—24 —-40

2

—6

-2 2

-2

—24 —-40

2

—6

2

0

0

0

0
0O 0 0 0 0 O
0O 0 0 0 0 O
0O 0 0 0 0 O

-2 —-414

2

—6

-2 —-414 2

2

—6

-2 =2 2

0
0

-2 —-414 2

2

—6

2 -2 =2 2

-2 —-414

2

—6

—88

-8

-8 8

-8

—88

-8

—40

0
0

0
0

4
—4—-4-4-40 O

—4 -4 4

—40

4

—4 -4 4

4

—4-4-4-40 0 4 O

—4 —4 4
4

4

—40 4

—40 0 O

—4

—40 4

—40 0 O

D,

D>

D3

Dy

Dg

D~

Dsg

Dy

Dio|3 3

D113 3

Di2|3 3

Di3|3 3

Dia|3 3

Dis|3 3

Dis|3 3

Di7|3 3

Dig|3 3

Dig|6 6

D3o|6 6
D2 |6

D23 |6

D23 |6

D2y |6

D25 |6

D2g |6

D27 |6

D»g |6

D29 |8

D30 |8

D31 |8

D3y |12 12
D33 |12 12
D34 |12 12
D35 |12 12

D3g|12 —12 4

D37|12 —12 4
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0 |Cig9 C20 C21 Caz Ca3 C24 Ca5 Ca26 Ca7 Cag Cag C30 C31 C32 C33 C34 C35 Cze Csz7
Dy |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D> |1 -1 -1 -1-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
D3 |1 -1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1
Dy |1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 —1
D5 |2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1
Dg |2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1 -1 1
D7 |—1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 0 0 0 0
Dg |-1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 0 0 0 0
Dg |—1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 0 0 0 0
Dip|—1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 0 0 0 0
Dip|—-1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 1 0 0 0 0
Di2|—1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 0 0 0 0
Dyz|-1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 0 0 0 0
Di4|—1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 0 0 0 0
Dis|—-1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 0 0 0 0
Dig|—1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 0 0 0 0
Dy7|—1 -1 -1 1 1 1 -1 1 -1 -1 1 -1 1 1 -1 0 0 0 0
Dig|—1 1 1 -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 0 0 0 0
Dig|2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D2o |2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D210 0 0 0 0 -2 0 2 0 -2 0 2 0 0 0 0 0 0 0
D22 |0 0 0 0 0 2 0 -2 0 2 0 -2 0 0 0 0 0 0 0
D230 0 0 0 0 0 -2 0 2 0 -2 0 2 0 0 0 0 0 0
D24 |0 0 0 0 0 0 2 0 -2 0 2 0 -2 0 0 0 0 0 0
D250 0 0 0 0 -2 0 2 0 2 0 -2 0 0 0 0 0 0 0
D2g |0 0 0 0 0 2 0 -2 0 -2 0 2 0 0 0 0 0 0 0
D27 10 0 0 0 0 0 -2 0 2 0 2 0 -2 0 0 0 0 0 0
D2g |0 0 0 0 0 0 2 0 -2 0 -2 0 2 0 0 0 0 0 0
D29 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 -2 0
D30 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 —V/31 V3
Ds;/0 0 0 0 0 0 O O O O O O O 0 0 -1+3 1 =3
D320 -2 2 -2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D330 2 2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D340 2 -2 =2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D350 -2 2 2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D3g |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D37 |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(B.2)
B.2. Character Table of the Group Gr¢s. The group Grgs has 32 conjugacy

classes and therefore 32 irreducible representations that are distributed according
to the following pattern:

a) 6 irreps of dimension 1, namely Dy, ..., Dg,

b) 10 irreps of dimension 3, namely D, ..., Dig,
¢) 6 irreps of dimension 4, namely Dsg, . . ., D29,
d) 8 irreps of dimension 6, namely Dos, ..., D3,

e) 2 irreps of dimension 12, namely D31, Dss.
The corresponding character table that we have calculated with the procedures

described in the main text is displayed below. For pure typographical reasons we
were forced to split the character table in two parts in order to fit it into the page.
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(B.3)

C7 Cg C9 Cip C11 Ci2 Ciz Cia Ci15 Che

Ce

C1 Cy C3 Cy Cs

1

-1 -1 -1 -1

-1

-1

1

-1 -1 -1 -1

-1

-1

1

-1 -1 -1 -1

-1

-1

-1 -1

-1

-1 -1

-1

-1 -1

-1

3
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3

-1

-1
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0
0
0
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—4 -4 4

41 -4

—4 -4 4

41 -4

—4 -4 4

41 -4

—4 -4 4

-6 2

-6 2

-6 2

-6 2

—4 4

—6 2

—6 2

—6 2

0

—6 2

-4 —4 4

4

0

-4 -4 0

—4 4

-4 -4 0

D1

Do

D3

Dy

Ds

Dsg

D7

Dsg

Dy

Dio |3

D113

Dia |3

D33

D43

Di5 (3

Dig |3

D7 |4

Dig |4

D19 |4

Dop |4

Doy |4

Dao |4

D23 |6

Doy |6

Dos5 | 6

Dog | 6

Do7 |6

Dog |6

Dag |6

D3 |6

D3y |12 12
D3z |12 12
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B.3. Character Table of the Group Gy5s. The group Gosg has 64 conjugacy
classes and therefore 64 irreducible representations that are distributed according
to the following pattern:

a) 32 irreps of dimension 1, namely Dy, ..., Dso,

b) 24 irreps of dimension 2, namely Dss, ..., Dsg,

c¢) 8 irreps of dimension 4, namely Ds7, ..., Dgy.

The corresponding character table that we have calculated with the procedures
described in the main text is displayed below. For pure typographical reasons
we were forced to split the character table in three parts in order to fit it into
the page.

0 C1 C2 C3 C4 C5 Cp C7 Cg Cg Ci10 C11 Ci12 C13 C14 C15 Ci16 Ci17 C18 Ci19 C20 C21 Ca2
pyj1 1 1 1 1 1 1 1 1 1 1 11 11 111 11 11
Dy |1 1 1 1 1 1 1 1 1 1 1 11 i1 01 1 1 1 1 1 1
py {1 1 1 1 1 1 1 1 1 1 1 11 i1 01 1 1 1 1 1 1
Dy |1 1 1 1 1 1 1 1 1 1 1 11 i1 01 1 1 1 1 1 1
Ds |1 1 1 1 1 1 1 1 —-11 1 —1 1 11 1 —1 1 1 -1 -1 -1
Dg |1 1 1 1 1 1 1 1 —-11 1 —1 1 11 1 —1 1 1 -1 -1 -1
Dy 1 1 1 1 1 1 1 1 —11 1 -1 1 11 1 -1 1 1 -1 -1 —1
Dg 1 1 1 1 1 1 1 1 —11 1 -1 1 11 1 -1 1 1 -1 -1 -1
Dg |1 1 1 1 1 1 1 1 1 —1 —1 1 1 11 11 -1 —1 1 -1 1
Dt 1 1 1 1 1 1 1 1 -1 —1 1 1 11 11 -1 -1 1 -1 1
Dyy1 1 1 1 1 1 1 1 1 -1 -1 1 1 11 11 -1 -1 1 -1 1
Dipf1 1 1 1 1 1 1 1 1 -1 -1 1 1 11 11 -1 -1 1 -1 1
Dig{t 1 1 1 1 1 1 1 —1-1 —1 —1 1 11 1 -1 -1 —1 -1 1 -1
D4/t 1 1 1 1 1 1 1 —1-1 —1 —1 1 11 1 -1 -1 —1 -1 1 -1
Dig/t 1 1 1 1 1 1 1 —1-1 —1 —1 1 11 1 -1 -1 —1 -1 1 -1
DlG 1 1 1 1 1 1 1 1 -1 —1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 -1
Dyl 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 11 1 -1
Digtl 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 11 1 -1
Digft 1 1 1 1 1 1 1 1 1 1 1 -1 —1 -1 —1 1 1 11 1 -1
Dol 1 1 1 1 1 1 1 1 1 1 1 -1 —1 -1 -1 1 1 11 1 -1
Doyl 1 1 1 1 1 1 1 —11 1 -1 -1 -1 -1 —1 -1 1 1 -1 —1 1
Dgooll 1 1 1 1 1 1 1 —11 1 -1 -1 —-1 -1 -1 -1 1 1 -1 -1 1
Dozl 1 1 1 1 1 1 1 —-11 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1
Doyl 1 1 1 1 1 1 1 —11 1 -1 -1 —-1 -1 -1 -1 1 1 -1 -1 1
Do/t 1 1 1 1 1 1 1 1 —-1 —-1 1 —1 —1 —1 —1 1 —1 —1 1 -1 -1
Dgglt 1 1 1 1 1 1 1 1 —-1 —-1 1 —1 —1 —1 —1 1 —1 —1 1 -1 -1
Dopft 1 1 1 1 1 1 1 1 -1 —-1 1 —1 —1 —1 —1 1 —1 —1 1 -1 -1
Dog|l 1 1 1 1 1 1 1 1 —1 —1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1
Dgglt 1 1 1 1 1 1 1 —-1-1 -1 —-1 -1 —-1 -1 —1 -1 —1 -1 —1 1 1
Dgplt 1 1 1 1 1 1 1 —-1-1 -1 —-1 -1 —-1 -1 —1 -1 —1 -1 —1 1 1
D3yft 11 1 1 1 1 1 —-1-1 -1 -1 —-1 —1 —-1 —1 -1 —1 -1 —1 1 1
D3gpft 1 1 1 1 1 1 1 —-1-1 -1 —-1 —-1 —1 —-1 —1 -1 —1 -1 —1 1 1
D3gl2 —-22 —-22 -22 -20 2 -2 0 2 -2 2 -2 0 2 -2 0 0 0
D34l2 —-22 -22 -22 -20 2 -2 0 2 -2 2 -2 0 2 -2 0 0 0
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C1 C2 C3 C4 C5 Cp C7 Cg Cg Ci10 C11 Ci12 C13 Ci14 C15 Ci6 Ci17 C18 Ci19 C20 C21 Ca2
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4

—4 —4 —4 —4 4

4

—4 0

—4 4

—4 —4 4

—4 4

—4 —4 4

—4 4

—4 —4 4

4

—4 —4 4

0

D35 |2

D3g |2

D372

D3g |2

D3g |2

Dyop |2

Dyq |2

Dyo |2

Dys3 |2

Dyy |2

Dys |2

Dyg |2

Dyr |2

Dyg |2

Dyg |2

D5p |2

Ds5q |2

Dgo |2

Dsg3 |2

Dsg |4

Dgg |4

Dggo |4

Dgy |4

Dgo |4

Dg3 |4

Dgy |4

(B.5)

C23 O24 C25 C26 CO27 C28 C29 C30 C31 C32 C33 T34 T35 C36 C37 C38 C39 C40 Ca1 Ca2 C43 Caa

—1

—1

—1

—1

1

—1

—1

—1

Dy

D2

D3

Dy

Ds

Dg

D7

Dg

Do

Dig|—1

Dig|-1
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C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 O35 C36 C37 C38 C39 C40 C41 C42 C43 Cag

—1

—1

-1

-1

—1

—1

-1 -1

—1

—1

—1

1

—1

—1

1

—1

—1

-1

-1

2

-2

2

-2

-2 2

—2

2 -2 -2 2 -

-2 2

—2

2

-2

0

-2 2

-2

-2 2

-2

—2

—2

-2 2

—2

2

-2

-2 2

—2

-2 2

-2

0

0

-2

2

-2

-2 =2 2

—2

2

—2

0

-2 2

-2

Diyg|—1

Di5|—1

Dig|—1

Dy7|—1

Dig|—1

Djg|—1

Dop|—1

Doo|—1

Dog|—1

Doy |—1

Dos|1

Dog |1

Do7|1

Dogl|l

Dag|1

D3p|1

D31

D3o |1

D332

D3y |2

D35|—2

D3g|-2 0

Dgr|-2 0

D3g|—2 0

D3g|2

Dyop|2

Dyq |0

Dyo |0

Dy3|0

Dyy|0

Dys5|0

Dyg|0

Dyr|0

Dyg|0

Dyg |0

Dsg|0

Ds1|0

Dgo|0

Ds5|0

Dsg |0

Dsg7|0
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0 |Ca3 Cg4 O25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 C37 O38 C39 C40 C41 C42 C43 Cag
Dgpl0 —4i0 4 0 O 0O O O O O O O O O 0O 0 0 O 0 0 0
Dgilo 0 o o o O O O O O O 0O O O O O 0O 0 O 0 0 0
Dgal0 45 0O —4i0 O O O O O O O O O O 0O 0 0 0O 0 0 0
Dgzglo o o o o O O O O O O 0O O O O 0O 0O O O 0 0 o0
Dgglo0 O 0O 0o O O O O O O O 0O O O O O 0 0 O 0 0 0
(B.6)

0 C45 Ca6 Ca7 Cag C49 Cs50 Os1 Cs2 C53 Cs4 COs5 Cs6 Cs57 Cs58 Cs9 C60 C61 C62 C63 Cea
Dy |1 1 11 111 11 11 11 11 111 11
Dy |1 1 11 111 11 11 11 1 -1 -1 -1 -1 —1 -1
D3 |1 1 11 11 -1 -1 -1 —-1 -1 -1 -1 -1 1 111 11
Dy |1 1 11 11 -1 -1 -1 -1 -1 -1 -1 -1 -1 —1 -1 -1 -1 -1
Dy |1 -1 1 -1 -1 -1 1 11 11 11 11 —1 1 -1 1 -1
Dg |1 -1 1 -1 -1 -1 1 11 11 11 1 -1 1 —1 1 -1 1
D7 1 -1 1 -1 -1 -1 -1 —1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 1 -1
pg it -1 1 -1 -1 -1 -1 -1 -1 —-1 —-1 —1 —1 —1 —1 1 —1 1 -1 1
Dg |[-1 —1 —-1 —1 1 —1 1 1 -1 —1 1 1 -1 —1 1 1 1 1 11
Dig|-1 -1 —-1 —1 1 —1 1 1 -1 —1 1 1 -1 —1 -1 -1 -1 —1 —1 -1
Dy|-1 -1 —-1 —-1 1 —1 —1 —1 1 1 -1 —1 1 1 1 111 11
Dig|—-1 -1 —-1 —-1 1 —1 —1 —1 1 1 -1 -1 1 1 -1 -1 —-1 —1 —1 -1
Dig|—1 1 -1 1 -1 1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1
Dig|—1 1 -1 1 -1 1 1 1 -1 —1 1 1 -1 —1 -1 1 -1 1 -1 1
Dig|—1 1 -1 1 -1 1 -1 -1 1 1 -1 —1 1 1 1 -1 1 -1 1 -1
Dig|—1 1 -1 1 -1 1 -1 -1 1 1 -1 —1 1 1 -1 1 -1 1 -1 1
Di7|-1 -1 —-1 —1 -1 1 1 11 1 -1 -1 -1 -1 1 111 -1 -1
Dig|-1 -1 —-1 —1 -1 1 1 11 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
Dig|—-1 -1 —-1 —1 —1 1 -1 -1 -1 -1 1 11 11 111 -1 -1
Dgg|-1 -1 —1 —1 —1 1 -1 -1 -1 -1 1 11 1 -1 -1 -1 -1 1 1
Dop|—1 1 —1 1 1 —1 1 11 1 -1 -1 -1 -1 1 —1 1 -1 -1 1
Dagg|—1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 1 1 -1
Dog|—1 1 —1 1 1 -1 -1 -1 -1 -1 1 11 11 —1 1 -1 -1 1
Doy|—1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1
Daos|1 1 11 -1 -1 1 1 -1 —1 —1 —1 1 11 111 -1 -1
Daog|l 1 11 -1 -1 1 1 -1 —1 —1 —1 1 1 -1 —1 -1 —1 1 1
Do7|1 1 11 -1 -1 -1 —1 1 11 1 -1 -1 1 111 -1 -1
Daog|l 1 11 -1 -1 -1 —1 1 11 1 -1 -1 -1 -1 -1 —-1 1 1
Dggll -1 1 -1 1 1 1 1 -1 —1 —1 —1 1 11 -1 1 -1 —1 1
D3pll -1 1 —1 1 1 1 1 -1 —1 —1 —1 1 1 -1 1 -1 1 1 -1
D3yl -1 1 -1 1 1 —1 —1 1 11 1 -1 -1 1 -1 1 -1 -1 1
D3pl -1 1 -1 1 1 —1 —1 1 11 1 -1 —1 -1 1 -1 1 1 -1
D3zl2 0 -2 0 O O 2 -2 2 -2 2 -2 2 -2 0 0 0 0 0 0
D3gl2 0O -2 0 O O -2 2 -2 2 -2 2 —-22 0 0 0 0 0 0
D3gs|-2 0 2 0 o0 O 2 -2 -2 2 2 -2 -2 2 0 0 0 0 0 0
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0 C45 C46 Ca7 C48 C49 C50 Os51 Cs2 C53 Cs4 COs5 Cs6 Cs57 Css Us9 Ceo C61 C62 Ce3 Cea
D3g|l-2 0 2 0o o0 O -2 2 2 -2 -2 2 2 -2 0 0 0 0 0 0
D3g7|l-2 0 2 0o o0 O 2 -2 2 -2 -2 2 -2 2 0 0 0 0 0 0
D3zg|l-2 0 2 o0 O O -2 2 -2 2 2 -2 2 -2 0 0 0 0 0 0
Dzgl2 0O -2 0 ©0 O 2 -2 -2 2 -2 2 2 -2 0 0 0 0 0 0
Dgpl2 O -2 0 ©O0 O -2 2 2 -2 2 —2 -2 2 0 0 0 0 0 0
D4y/0 0O 0O O -2 90 0O 0O 0O 0O 0O 0 0 O 2 —2 2 2 -2 -2
Dgpl0 0 0O O -2 90 O 0O 0O O O ©O0 0 o0 2 2 -2 —2 2 2
Dggl0O0 0 o O 2 o0 O O O O O O 0 0 -2 2 2 —2 -2 2
Dggl00 0O 0 0O 2 o0 o0 0O 0O 0O 0O O 0 0 2 —2 —2 2 2 -2
DgyslO 0 0o O O —-290 0O 0O 0O O ©O0O 0O 0o 0O 0 0 0 0 o0
DgyglO O O O O —-290 0O 0O O O O 0O 0o 0 0O 0 0 0 0
Dg47l0 O O O O 2 ©O0O 0O O O O O O 0O 0 O O O 0 0
DgyglO 0 o ©O0O ©O 2 o0 0O 0O O O O 0O 0O 0 0 0 0 0 0
DgglO 0 0o O O 2 o0 0O 0O 0O O O 0O 0O 0 0 0 0 0 0
DspglO0 0 o o ©O 2 o0 o0 O O O O O 0 0 O O 0 0 0
Ds;l0 0 0o O O —-20 0O 0 O O O O 0O 0 O O 0 0 0
Dspl0 0 0 0O ©O —-290 o0 0 0O O O O 0O 0 0 0 0 0 0
Dszglo 0o o O 2 o0 O 0O 0O O O O 0 0 -2 -2 2 2 2 2
DsglO0 O 0 O 2 o0 O 0O O O O0O O 0 0 2 2 —2 —2 —2 -2
Dssl0 0 0o O -2 0 O 0O O0 O O O 0 0 -2 2 2 —2 2 -2
DsglO 0 0O O -2 0 O 0O 0 0O O ©O0 0 0 2 —2 —2 2 —2 2
DszlO0 0 0o o ©O O O OoO 0O 0O O O O 0O 0O 0O 0 0 0 0
Dsglo0 0 o O O O O o0 O0O 0O O O O 0 0 O O O 0 0
DsglO0 0 0o O O O O o0 O0O OoO O O O 0 0 O O 0 0 0
Dgpl0 —4i0 4 O O O O O O O O O 0 0 0 0 0 0 0
DgilO 0 o o ©O O O OoO o0 o 0O O O 0O 0 0 0 0 0 0
Dgal0 4 0O —40 O O O O O O O O 0 0 0 0 0 0 0
Dggl0 0 o O O O O O O0O OoO O O O 0O 0 O 0 0 0 0
DgylO O 0 0O O O O o0 o0 0 0 0 0 0 0 0 0 0 0 0
(B.7)

B.4. Character Table of the Group G125. The group Gi2g has 56 conjugacy
classes and therefore 56 irreducible representations that are distributed according
to the following pattern:

a) 32 irreps of dimension 1, namely Dy, ..., D32,

b) 24 irreps of dimension 2, namely Dss, ..., Ds¢.

The corresponding character table that we have calculated with the procedures
described in the main text is displayed below. For pure typographical reasons
we were forced to split the character table in three parts in order to fit it into
the page.

0 |C1 Cy O3 O4 Cs5 Cg C7 Cg C9 Ci1o C11 Ci2 Ci13 Ciga Ci15 Cie Ci7 Cig Cig
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0 C1 Cy C3 C4 Cs5 Cg C7 Cg C9 Cig C11 Ci2 Ci13 Cia Ci15 Cie C17 Cig Cig
Dy |1 4 -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i —1
Ds |t -1 1 -1 1 -1 1 —1 1 —1 1 -1 1 -1 1 -1 1 -1 1
Dg [t -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
Dy |1 —i -1 1 —i =1 1 - =1 i 1 —i =1 i 1 —i -1
Dg |1 —i —1 i 1 —i =1 1 —i -1 i 1 —i =1 i 1 —i -1
Dg |1 1 101 101 101 101 1 1 1 1 1 1 -1 -1 -1
Digl1 1 101 101 101 101 1 1 1 1 1 1 -1 -1 -1
Dy |1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i -1 —i 1
Dy |1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i -1 —i 1
Dygft -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1
Dyg|t -1 1 -1 1 -1 1 -1 1 —1 1 -1 1 -1 1 -1 -1 1 -1
Dys|1  —i —1 i 1 —i =1 1 —i -1 i 1 —i =1 i -1 1
Dig|1 —i -1 i 1 —i =1 1 —i -1 i 1 —i =1 i -1 1
D7 |1 1 101 101 101 101 1 1 1 1 1 1 1 1 1
Dig|1 1 101 101 101 101 1 1 1 1 1 1 1 1 1
Dig|1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i —1
Dog |1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1
Doyt -1 1 -1 1 —1 1 —1 1 —1 1 -1 1 -1 1 -1 1 -1 1
Doyt -1 1 -1 1 -1 1 —1 1 —1 1 -1 1 -1 1 -1 1 -1 1
Dos |1 —i —1 i 1 —i =1 1 —i -1 i 1 —i =1 i 1 —i -1
Dog |1 —i —1 4 1 - =1 1 - =1 i 1 —i =1 i 1 —i -1
Dos |1 1 101 101 101 101 1 1 1 1 1 1 -1 -1 -1
Dog |1 1 101 101 101 101 1 1 1 1 1 1 -1 -1 -1
Doy |1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i -1 1
Dog |1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i -1 —i 1
Dog|t -1 1 -1 1 -1 1 —1 1 —1 1 -1 1 -1 1 -1 -1 1 —1
D3pft -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1
D3y |1 —i —1 i 1 - =1 1 - =1 i 1 —i =1 i -1 i 1
D3o |1 —i —1 i 1 —i =1 1 —i -1 i 1 —i =1 i -1 1
D332 2 2 2 -2 —2 —2 -2 2 2 2 2 -2 -2 -2 -2 0 0 0
D34 |2 26 —2 —2¢ —2 —2i 2 2 2 2 -2 —2i —2 —2i 2 2i 0 0 0
D3sl2 -2 2 -2 —22 -2 2 2 -2 2 -2 -2 2 -2 2 0 0 0
D3g |2 —2¢ —2 28 —2 2¢ 2 —2i 2 —2i —2 2§ —2 2i 2 —2i 0 0 0
D37l2 2 2 2 2 2 2 2 -2 —2 -2 -2 -2 -2 -2 -2 2 2 2
D3g|2 26 —2 —2i 2 28 —2 —2i —2 —2§ 2 2 -2 —2i 2 2i 2 2 -2
D3ggl2 -2 2 —2 2 -2 2 —2 —22 —2 2 -2 2 -2 2 2 -2 2
Dyol|2 —2¢ —2 28 2 —2i —2 26 —2 2i 2 —2i —2 20 2 —2i 2 —2i —2
Dyi|2 2 2 2 -2 -2 —2 —2 -2 —2 -2 -2 2 2 2 2 0 0 0
Dy |2 2¢ —2 —2i —2 —2i 2 20 —2 —2i 2 2 2 2i -2 —2i 0 0 0
Dysl|2 -2 2 —2 -2 2 —2 2 —2 2 —2 2 2 —2 2 -2 0 0 0
Dyg|2 —2i —2 2¢ —2 2i 2 —2i —2 2i 2 —2i 2 —2i —2 2i 0 0 0
Dysl2 2 2 2 2 2 2 2 -2 —2 -2 -2 -2 -2 -2 -2 -2 -2 -2
Dygl|2 28 —2 —2¢ 2 2i —2 —2i —2 —2i 2 2i -2 —2i 2 2 -2 —2i 2
Dy7l|2 -2 2 —2 2 -2 2 —2 —22 —2 2 -2 2 -2 2 -2 2 —2
Dyg|2 —2i —2 2@ 2 —2i —2 2% —2 2i 2 —2i —2 20 2 —2i —2 2i 2
Dygl2 2 2 2 -2 -2 -2 -2 -2 —2 -2 —2 2 2 2 2 0 0 0
Dso|2 26 —2 —2¢ —2 —2i 2 26 —2 —2i 2 2i 2 20 -2 —2{ 0 0 0
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0 C1 Cp O3 C4 Cs5 C¢ C7 Cg C9 Cig Ci1 Ci2 Ci13 Ci4a Ci15 Cie Ci7 Cis Cig
Dsy|2 -2 2 -2 —22 -—22 —22 -2 2 2 —2 2 -2 0 0 o0
Dsp |2 —2i —2 28 -2 2 2 -2 —2 2i 2 —2i 2 —2i —2 28 0 0 0
Ds3l|2 2 2 2 -2 -2 -2 -2 2 2 2 2 -2 -2 -2 -2 0 0 0
Dsg|2 20 -2 —2¢ —2 —2¢ 2 2 2 2 —2 -2 -2 -2 2 2 0 0 0
Dssl2 -2 2 -2 -—22 -—22 2 -2 2 —2 -2 2 -2 2 0 0 0
Dsg |2 —2i —2 26 —22i 2 -2 2 —2i -2 2i -2 2i 2 —2 0 0 0
(B.8)
0 Co0 C21 Cz2 Ca23 Ca4 Co5 C26 C27 C2g C29 C30 C31 C32 CO33 C34 C35 C36 C37 O3
Dy |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dy |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dz |—i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i
Dy |[—i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i
Ds |[-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
Dg |-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
Dy |i 1 —i -1 1 —i -1 4 1 —i -1 i 1 —i -1 1
Dg |i 1 —i -1 1 —i -1 4 1 —i -1 i 1 —i -1 1 —i
Dg [-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1
Dig|-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1
Dqq |d 1 i -1 —i -1 —i 1 i 1 i -1 —i -1 —i 1 i -1 —i
Dy |d 1 i -1 —i -1 —i 1 i 1 i -1 —i -1 —i 1 i -1
Dy3|1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1
Dig |1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1
Dis|—i 1 —i -1 -1 1 —i 1 i -1 -1 1 - =1
Dig|—i 1 —i -1 -1 1 —i 1 i -1 -1 1 - =1
Dir|1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
Dig|1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
Dig|—i —1 —i 1 i -1 —i 1 i -1 —i 1 i -1 —i 1 i 1 i
Dog|—i -1 1 i -1 1 i —1 1 i -1 —i 1 i 1 i
Doj|—1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1
Dog|—-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1
Dos | -1 i 1 —i =1 i 1 i -1 i 1 —i -1 1 —i 1 —i
Doy |é -1 i 1 —i -1 1 —i -1 i 1 —i -1 1 —i 1 —i
Dos|-1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1
Dog|—-1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1
Doy | -1 —i 1 i 1 i -1 —i -1 —i 1 i 1 i -1 —i -1 —i
Dog | -1 —i 1 i 1 i -1 —i -1 —i 1 i 1 i -1 —i -1 —i
Dog |1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
D3 |1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1
Dgy|—i —1 1 —i 1 —i -1 4 -1 i 1 —i 1 —i -1 -1 i
Dgo|—i —1 1 —i 1 —i -1 4 -1 i 1 —i 1 —i -1 -1 i
D3zlo 2 2 2 2 0 0 0 o0 -2 -2 -2 -2 0 0 0 0 0 0
Dgql0 2 28 -2 —260 0 0 0O -2 -2 2 2 0 0 0 O 0 0
D3slo 2 —2 2 -2 0 0 0 o0 —2 2 —2 2 o 0o 0o 0 0 o0
Dzg|0 2 —2¢ -2 26 0 0 0 0 -2 20 2 -2 0 0 0 0 0 0
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C36 C37 Css

C26 C27 C28 C29 C30 C31 O3z C33 C34 C3s5

C20 C21 C22 C23 C24 Cas

[¢]

—2i

—21

-2

21

0

27

24

—2q

o]

21

—217

—2i

21

0

-2

24

]

[¢]

—2i

—21i

0

21

—217

21

0

—214

27

24

—2q

24

27

—217

—2

27

—2i

—217

21

—2

0

D37 |2

D3g

D39

Dyg | 2i

Dyy | O

Dys | O

Dysz |0

Dyy4 |0

Dys

Dyg | 2i

Dyr |2

Dyg

Dyg |O

D5g |0

D57 |0

D52

D55 |0

D5 | O

(B.9)

C39 Cap Ca1 Caz Ca3 Caq Cas5 Cae Car Cag C49 Cs50 Cs51 Cs2 Os53 Cs4 C55 Cs6 O

-1

—1

—1

1

—1

—1

1

1

—1

—1

—1

—1

0

Dy

D2

D3

Dy

Ds

Dg

D7

Dg

Dg

Dio
D11

Di2

D13

Dig

Djs |1

Dig |1

Djy7 |1

Dig

D19

D2

D2y

Dao |1

D23

Doy




(B.10)

B.5. Character Table of the Group Ggs. The group Ggs is Abelian and
The corresponding character table that we have
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0

0

0

24

—2i 0
0

-2

21

C39 Cap Ca1 Caz Ca3 Caq Cas5 Cae Car Cas Ca9 Cs0 Cs51 Cs2 Os53 Cs4 C55 Cs6 O
0

-1
-1

1

-1

-1

1

—2

—2

—2

—2

C1 Co C3 C4 C5 Cp C7 Cg Cg Ci10 C11 Ci12 C13 Ci14 C15 Ci1e6 Ci17 C18 Ci19 C20 C21 Ca2

oo oo
oo oo
oo oo
] ]
- 3~ 3

)
~ 3 3 3

oA A A

L] L] ~
~ 333333+~ 3

o] o™ 2] ]
~ 3~ 333333

Moo oo
- 33 33~333

MMM M N

~ 33333

L] ~ )
~ 3333 3~3

~ [N o]
~ 34 3 3~ 3~

Mmoo
~ 3333 3~3

RN

- - == 3333

[ R )
~ 3~ 33333

—

—

o o MmN
~ 3333~ 33

)

™ a o
~ 333333+

-~ =~ 3333

m N

®

~ 333~ 333

0
D25
Dag
Doz |1
Dag
Dag
D30
D31
D32
D330
D34 |0
D35 |0
D3g |0
D37
Dgg |2
D39
Dyo |2
Dy |0
Dys |0
Dys3 |0
Dyy4 |0
Dys
Dye
Dy7 |2
Dyg
Dyg |0
Dgsg |0
Ds3 |0
Dsg |0
0

1-dimensional representations.

parts in order to fit it into the page. In the formulae below w = exp [QT’T i] is a

pure typographical reasons we were forced to split the character table in three
cubic root of the unity.

calculated with the procedures described in the main text is displayed below. For

has order 64. Hence it has exactly 64 conjugacy classes and 64 irreducible
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C1 C2 C3 C4 C5 Cp C7 Cg Cg Ci10 C11 Ci12 C13 Ci14 C15 Ci6 Ci17 C18 Cig C20 C21 Ca2

w2

1

w2

1

w2

w3 w? W

w2

1

w21

0

Dqq |1

Dig |1

Djy3 |1

Diyg |1

Dis|1

Dig|1

Dir|1

Djg|1

Dig |1

Dog |1

Dopq |1

Doo |1

Doz |1

Doy |1

Dos (1

Dog |1

Doy |1

Dog |1

Dog |1

D3 |1

D3q |1

Dgo |1

D33 |1

D3y |1

D35 |1

D3g |1

D37 |1

D3g |1

D3g |1

Dy |1

Dyq |1

Dyo |1

Dys |1

Dyy |1

Dys |1

Dyg |1

Dyr7 |1

Dyg |1

Dyg |1

D53 |1

Ds5yg |1

D55 (1
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0 C1 O C3 C4 C5 Cg C7 Cg Cg Cip C11 Ci2 C13 Cia Ci15 Ci6 Ci17 C18 Ci9 C20 C21 C22
Dsr[l 1 1 1 w?2w?2w?2w?21 1 1 1 w? w?2 w? w2 w3 W W3 0 0 o
Dsgll w w2 w3 w?2uwd 1l w 1w w? W w? WP 1w WP 1w 0 0 o
Dsgll w? 1 w?w?21 w21 1 w2 1 w2 w2 1 w2 1 W w o o0 o
Dooll B w?w wlw 1 w31 Wl w? 6 w2 w 1 W3 Wd W w o0 o0 o
Dot 1 1 1 w?wdwdudu?w? o o2 o w w w W WP WP 0o 0 o
Dezll w w2 wd w1l w w22 1 w w w2 Wd 1 Wwd 1 w o0 o0 o
Dgz|l w21 w?2wdw wdw w21l w21 e WP w WP W w w0 0 o
Dga|l w3 w?2w wdw?Zw 1 wlew 1w w 1w Ww? Wd W?2 w0 0 o
(B.11)

0 |C23 C24 C25 C26 C27 C28 C29 C30 ©31 C32 C33 O34 U35 C36 C37 C38 C39 C40 C41 C42 C43 C4aq
pyjt 1+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dy 02 w® 1 w w? o 1 w w? ¥ 1 o w? WP 1 W w2 Wd 1w w2 W
Dy |1 w2 1 w2 1 w21 w?2 1 ow? 1 Ww?1 w21 w? 1 w21 W21 W2
Dy o2 w 1 wd w2 w 1 wd w2 w 1 Wl w?ow 1 Wl W? w 1 W W? oW
Dy |w w w? w? w? w? W¥ Wl W WPl 1 1l e v ow w? w? W? W
Dg w3 1 w2 Wd 1 w w1l w w1l ow w? W e w? Wl w? Wl W
Dy o w® w2 1 w2 1 w® w Wl ow 1 w21 w?ow W’ e w? w? 1 W2 1
Dg |03 w2 w? w 1 od w® w? w 1 1 w® w? ow w 1 wd w? w?ow 1 W
Dg [w?2 w2 1 1 1 1 w? w2 w2 w2 1 1 1 1 w? w? W? W21 1 11
Dig|l « 1 w w? w? w2 W1 w1 w w? W? Ww? WPl w1 e Ww? W8
Dipfw? 1 1 w2 1 w? w?2 1 w2 11 w? 1 w? w21 w11 Ww? 1 W?
Diafl w3 1 W? w? W w? w1 w1 Ww? W? w w2 w1 Wl W W2
Digled w? w? w? w2 02 w w w w 1 1 1 1 Wl Wd WB Wl W? w? W2 2
Do w? w? w3 1 w o w? wd 1 1 w w? W Wl 1l W w? w? WP 1 W
Diglo? w w2 1 w2 1 w W w w31 w21 w? Wl e W3 ow w2 1 W2 1
Digle 1 w2 w 1 w w 1 W w? 1 W W? w W Ww? w1 w? w1 Wl
Di7|w w w w w w w w w w w2 w? w? Ww? W? W W? W? WP WP W? W2
Digled 1 w w2 w3 1w w? W31 w? W1 w w2 W1l w w2 W1 W
Diolw w® w wd w od w W w W W2 1 w? 1 w2 1 w21 w? 1 W2 1
Doole® w2 w 1 wd w2 w 1 w? w? 0?2 w 1 W w? W 1 w? w? ow 1 W
Doplw? w? wd wd wd W3 1 1 1 1 w2 w2 w? w? Wl W3 W3 Wi 1 1 1 1
Dooll  w w? 1w w? 1l w w? Wl w? Wl e Wl e w21l W Ww? Wd
Doglw? 1w w w3 w1 w? 1 w? w?2 1 w21 W e Wl w1 Ww? 1 W?
Doglt w3 w3 w2 w1 1 WP w? W w? w1 Wl W Ww? w11 W W2
Dosle® w? w w w w w® Wl Wl Wl w2 w2 w? w2 1 1 1 1 w? w? W2 o2
Doglo w? w w? W 1 w1 w w? o2 W 1w 1w w2 W w? WP 1w
Dorl? w w w3 w w3 wd w Wl w w2 1 w2 1 1 w2 1 w? w2 1 W2 1
Dogle 1 w 1 wd w? wd w2 w1 w? e 1 w1 W Ww?w w? w1 Wl
Dogll 1 w3 w3 w3 Wl w? Ww? W? Ww? w? Ww? W? W v w w w1111
D3olw? w3 w® 1w w? W2 Wl 1w w? WPl w w w? Wl 1w W2 W8
D1l w2 wd w0 W w w2 1 w2 1 w2 1 W2 1 w W ow Wl 1 w2 1 w2
Dagle? w w? w? w 1 w2 w 1 Wl w? w 1 WP ow 1 Wd w? 1 W W2 W
Di3glw? w? w2 w? W2 W2 w2 W2 W2 W2 1 1 1 1 1 1 1 1 1 1 1 1
D3gll @ w? ¥ 1w Ww? W1l w1 w w? W1 w w? WPl e W? W8
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0 |C23 C24 C25 C26 C27 C28 C29 C30 O31 C32 C33 O34 U35 C36 O37 C38 C39 Ca0 Ca1 C42 Ca3 Caa
D3slw? 1 w2 1 w2 1 w2 1 w2 1 1 w21 Ww? 1 w21 W? 1 w21 W2
D3gll w3 w? w 1 w? W? w1 w1l Wl Ww? w1 Wl W? w1 Wl W
Dy7lw? w3 1 1 1 1 o w w w 1 1 1 1 w w w w w «? u? W2
Daglw w2 1 w w? wd w w? w1l 1w w? W w? WPl w2 W1l W
Daole® w 1 w2 1 w2 w W w wd 1 w21 w? ow Wd e wd w? 1 W2 1
Diole 1 1 wd 0?2 o w 1 w? w21 w® w?ow w 1 wd w? w?ow 1 W
Dyl 1 w2 w? w2 w2 1 1 1 1 1111 w? ow? w? W21 1 1
Dyalw? w3 w2 W 1w 1w w? WPl w w? W? Ww? WPl w1 e W? W8
Dyz|l w? w2 1 w2 1 1 w21 w? 1 w?1 Ww? Ww?1 Ww? 11 w21 WP
Dyglw? @ w2 w 1 WP 1 W w? w1 Wl w? w Ww? w1 W Wl W2
Dysle w 1 1 1 1 w w3 wd w3 1 1 1 1 ¥ wd ¥ Wl w2 w2 W2 W2
Dagle® 1 1 w w? o® 0 1 w w2 1 o w? W Wl 1 e w? w? Wl 1w
Darlw w? 1 02 1 w? w® w wd w 1 w2 1 w? wd w Wl w w? 1 w2 1
Dyglw® w2 1 W w? w W? w? w11 Wwd Ww? w W W w1 w? e 1 WP
Dyg W3 Wl W W3 W3 W3 W W W3 W3 W2 W2 W2 W? W2 W2 W2 W? W? W2 W2 W2
Dsolo w? w? 1 w 02 o 1 w w? o2 o 1w w? W 1w w? WP 1w
Dgpfe® w W w Wd w w® w Wl ow w2 1 w? 1 w2 1 w2 1 w? 1 W2 1
Daglo 1 w? w2 w 1 w® w? w 1 w2 w 1 W w? e 1 W w?ow 1 W
Dszll 1 w w w w w? w? w? w? w? w? w? W? W W Wd W1 1 1
Dglw? w3 w w? w31 w? Wl e w? Wl e Wl e w1l W Ww? Wd
Dss(1  w? o w? w W W1 w21 w? 1 w21 W e W w1 w1l WP
Dagle? w w 1 wd 02 02 w 1 wd w? w 1 WP Wl W2 w 1 1 W W? W
Darlo w w? @l Wl ¥ o w w w w2 w2 w? w2 1 1 1 1 w? w? W2 o2
Dsgle® 1 w® 1 w w? w w? w3 1 w2 w3 1 w 1 w w? W’ w? Wd 1 w
Dsglw w3 w? w Wl w w Wl e W Ww? 1 Ww? 11 w21 Ww? Ww? 1 W? o
Dgolw? w? w? w? w 1w 1wl w? Ww? w1 W1l Wl W? w w? e 1 WP
Dgrlw? w2 w W w w 1 1 1 1 w? w? W? w2 w o ow o w 11 1 1
Dea|l w w w? W¥ 1 1w w? Wl w? W 1w w w? W1 1w w2 W
Deglo? 1 w wd w od 1 w? 1 w? 02 1 w? 1 w Wd e wd 1 w2 1 W2
Deall  w? w 1 w® w2 1 W w? w w? w 1 w? w1 Wl w2 1 W W W

0 Ca5 Ca6 Ca7 Cag Ca9 Cs0 Os51 Cs2 Cs53 Cs4 COs5 Cs6 Cs7 Cs8 Cs9 Ceo C61 Ce2 C63 Cea
p;yft ¢+ 1 1t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dy 1 w @2 wd 1 w w? w? 1 w w? wd 1w w? W 1w w2 W
D3 (1 w2 1 w2 1 w2 1 W21 w21 w21 w21 w? 1l w1 w?
Dy 1 w® w2 w 1 wd w? ow 1 Wl w? ow 1 WP w? w1 wd W? ow
Dy (w3 w3 W3 W1 1 11w v e ow w? w? w? w? Wl Wl Wl WS
Dg |03 1 & w2 1 w w? W w w2 W 1 w2 W3 1 W W 1w w2
Dy w3 w W? w1 w1 W? w W e wd w21 w1 W e Wl e
Dg |3 w2 w 1 1 % w2 w w 1 W w? W2 ow 1 W3 W3 Ww? W 1
Dy |w? w? w2 w2 1 1 1 1 w? Ww? w? W11 w2 w2 W? w2
Dio|w? ¥ 1 w 1 w w? w? w? W 1w 1w w? W Ww? W 1w
Di1lw? 1 w2 1 1 w2 1 w? w2 1 w? 11 w21 w? Ww? 1 W? o
Digfw? w 1 w3 1 w® w2 w w? w 1 wd 1 W w? W w? ow 1 W
D3 |w w w w 1 1 1 1 w3 W W3 WP w2 W? W2 W2 W w w w
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0 C45 Ca6 Ca7 C48 C49 Cs50 Os51 Cs52 C53 Cs4 COss5 Cs6 Cs7 Cs8 Cs9 Ce0 C61 Ce2 Ce3 Cea
Diglw w2 w3 1 1 o w?2 W w1 w w? Ww? Wl w w w? W3
Disle w® @ w3 1 w2 1 w? wd w WP ow w2 1 w? 1w W w W
Digle 1 % w2 1 o® w2 w w® w2 w 1 w2 w 1 Wd w1 wd W2
Dir|w? w2 w2 w? wd w3 W3 w3 W3 W3 W3 W3 W3 W3 W3 W3 W3 WB W3 LB
Diglw? w? 1 o W 1w Ww? W1 w w? Wl e w? Wl e W?
Dqg w2 1 w2 1 w3 w w3 w w3 w w3 w w3 w w3 w w3 w W3 W
Doglw? w 1 w3 Wd w2 w1 Wl w? w1 W W2 w1 Wl Ww? w1
Doplw w @ w w® w® Wd W11 11w ow ow e w? w? w2 W2
Doglw w2 o3 1 w® 1w w? 1w w? wd W w? W 1 w? WP 1w
Doglw w3 & w? wd w Wl w 1 w2 1 w? w w? w Wl w? 1 W2 1
Doglw 1 w3 w2 W3 W2 o 1 1 Wl W? w1 Wl w? w? w1 WB
Dos (1 1 1 1 w3 Wl Wl W W w w w w3 W3 Wl W w w w
Dogll w w2 ¥ W3 1w Ww? w w? Wl Wl e w? e w? Wl
Dorl w2 1 w? w® o W w w W w wd Wd e WP e w WP w W
Dogll  w® w2 w w® w2 w 1 w1 W w? Wd w? ow 1w 1 wd W2
Doglwd w3 w3 wd wd w3 W3 WP w? w2 Ww? w2 W w w w 1 1 1 1
Dgplw® 1 w w? W 1w w? w? Wl w w o w? Wl 1w Ww? WS
D3plw? w W? w Wd w W w W21 W2 1w WP e WPl w21 W2
Diglwd w2 w 1 w® w? w 1 w? w1 wd w1 wd W2 1 WP W2 W
Dazll 1 1 1 w? w? w? w? w? o2 o2 o2 o2 W2 W2 W? w? w? W? W2
D3gll o w2 w3 w? W 1w w? W 1w w? WP 1w w? WP 1w
Dgs|l  w? 1 w? w? 1 w? 1 w? 1 w? 1 w? 1 w21 w? 1 W2
D3gll  w? w2 o Ww? w1 W? W? w1 W W? w1 Wl W w1 WP
Darlw? w3 W3 W3 WZ WZ W? W? Wd W W Wl 1 1 1w e w ow
Daglwd 1 o w? w? ¥ 1w o 1w w2 1w w? W ow w? W3 1
Diglwd w o® w w2 1 w2 1 wd e WP oo 1 w? 1 W w WP w W
Diolw? w2 @ 1 w? w 1 w? wd w2 w 1 1 W w? W w 1 w3 W2
Dgilw? w2 w? w? W? W2 W2 W2 1 1 11 Ww? Ww? w2 w?2 1 1 11
Daglw? w3 1 w w? W31 w1 w w? Wl Ww? Wl w1 w Ww? WB
Dyzlw? 1 w2 1 w2 1 w2 1 1 w21 w? w21 w211 w21 w?
Daglw? o 1 W w? w 1 w? 1 W w? e w2 ow 1 W1 WP W2 W
Disle w o w @? 0?2 w2 w? w w w w 1 1 1 1 w3 wd w3 W
Diglew w2 o3 1 w2 3 1 w w w? w1 1 w w? Wl Wl 1w w2
Dyrlw w3 w W Ww?Z 1 w2 1w W e Wwd 1 Ww? 1 w? W e W e
Dyglew 1 w? w?2 w2 w 1w w1 W Ww? 1 Wl w2 w W Ww? w1
Dyg w2 Ww? w2 W2 o w w w w w w w w w w w w w w w
Dsolw? w® 1 w o 02 W 1w w2 W 1 ow w? W 1w w? W3 1
Dsilw? 1 o2 1 o od w W e W w wd e W ow W w WP ow W
Diglw? w 1 w? w 1 W’ w? ow 1 w? w? e 1 wd w2 w 1 w3 W2
Dszlw w w w w w w w w? w? w? W2 W W WP W1 1 1
Dsglew  w? wd 1w w? W1 w? WPl w w1 e w1 w o Ww? WS
Dsslw  w? o W¥ o W w Wd W21 w2 1 Wl e Wl w1 w1 w?
Dsgle 1 o3 w2 o 1 W w? w? w 1 wd W w? w1 1 WP W? W
Dsrll 1 1 1 @ o ow ow od wd W WP w w w o Wl WP Wl Wi
Dsgll o o2 wd w w2 W3 1 w3 1w w? e w? w3 1 Wl 1w w2
D59 |1 w2 1 w2 w w3 w w3 W W w3 w w W3 W W3 oW W W3 W
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0 Ca5 Ca6 Ca7 Ca8 Ca9 Cs50 Os51 Cs2 Cs53 Cs4 COs5 Cs6 Cs7 Cs8 Cs9 Ceo Ce61 Ce2 C63 Cea
Dgoll w3 w2 o w1 w? w? Wl W2 oW w1 Wl Ww? W W? w1
De1|wd ¥ Wd W w W w w1 1 W3 W3 W3 W3 W2 W2 W2 W2
Dealwd 1 @ w? o w2 Wwd 1 1w w? wd Wl 1w w? w? WP 1w
Dez|wd w o® w w wd W wd 1 W2 W2 W3 W w3 W w2 1 W2 1
Dgglw? w2 w1 w1 W3 WZ 1 Wl W2 w Wl W? w1 W w1 W8
(B.13)

B.6. Character Table of the Group Gig2. The group G192 has 20 conjugacy
classes and therefore it has 20 irreducible representations that are distributed
according to the following pattern:

a) 4 irreps of dimension 1, namely Dy, ...
b) 12 irreps of dimension 3, namely Dy, ..

7D4,
., D1s,

¢) 2 irreps of dimension 2, namely D17, Dss,

d) 2 irreps of dimension 6, namely Djg, Dag.

The character table is displayed below, where by € we have denoted the cubic
root of unity € = exp [%’T i].

0 C1 Cp O3 C4 CO5 Cg C7 Cg Cg C10 C11 Ci12 C13 Ci4 Ci5 Ci6 Ci17 Ci18 Cig C20
Dyt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dy [t 1 1 1 1 1 1 1 1 1 -1 -1 -1 —-1 —-1 -1 -1 —1 1 1
Dy 1 -1 -11 1 —11 —1-11 1 -1 -1 1 1 -1 -1 1 1 —1
Dy [t -1 -11 1 —11 —1-11 -1 1 1 -1 -1 1 1 -1 1 -1
Ds [3 -3 -33 -11 -11 1 -1 -1 1 1 -1 1 -1 -1 1 0 0
Dg [3 -3 -33 -11 —-11 1 -1 1 -1 -1 1 -1 1 1 -1 0 0
Dy |3 3 3 3 —-1-1-1-1-1-1 -1 -1 -1 —1 1 1 1 1 0 0
Dg [3 3 3 3 —1—-1-1-1-1-1 1 1 1 1 -1 -1 -1 -1 0 0
Dg [3 3 —-1-1-13 3 —-1-1-1 —1 1 -1 1 1 1 -1 -1 0 0
Digf3 3 -1 -1-13 3 -1 -1 -1 1 -1 1 -1 -1 -1 1 1 0 0
D13 -31 -1 -1-33 1 1 -1 —1 -1 1 1 1 -1 1 -1 0 0
Digf3 —-31 —-1-1-33 1 1 -1 1 1 -1 -1 -1 1 -1 1 0 0
D33 3 -1 -13 —-1-13 —1 -1 —1 1 -1 1 -1 -1 1 1 0 0
D43 3 —-1-13 —-1-13 —1 -1 1 -1 1 -1 1 1 -1 -1 0 0
D53 -31 —-13 1 —-1-31 -1 -1 -1 1 1 -1 1 -1 1 0 0
Digl3 -31 —-13 1 -1 -31 -1 1 1 -1 -1 1 -1 1 -1 0 0
Dyz2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 e(e +1) e(e +1)
Digl2 -2 -22 2 —22 -2 -22 0 0 0 0 0 0 0 0 e(e +1) —e(e +1)
Digl6 6 -2 —2 —2 —2 —2 —22 2 0 0 0 0 0 0 0 0 0 0
Dogl6 —62 —2-22 —22 —22 0 0 0 0 0 0 0 0 0 0

B.7. Character Table of the Group Ggg.
classes and therefore it has 16 irreducible representations that are distributed
according to the following pattern:

a) 6 irreps of dimension 1, namely Dy, ..

b) 10 irreps of dimension 3, namely D7, ...

(B.14)
The group Ggg has 16 conjugacy

7D6,
7D16-
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The character table is displayed below, where by € we have denoted the cubic
root of unity € = exp [%’T i].

0 Cy Cy C3 Cy4 Cs Cg C7; Cg Cy9 Cio Ci11 Ci2 Ciz3 Cia Cis Cis
D, |1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D, |1 -1 -11 1 -1 -11 -11 1 -1 1 -1 1 -1
Dsy {1 1 1 1 1 1 1 1 1 1 1 1 € € € ¢
Dy |1 -1 -11 1 -1 -11 -11 1 —1 € I
Ds |1 1 1 1 1 1 1 1 1 1 1 1 €& & € ¢
Dg |1 -1 -11 1 -1 —-11 —11 1 —1 & —€ ¢ —e
D; |3 -3-33 -11 1 -11 -1 -1 1 0 0 0 0
Ds |3 3 3 3 -1-1-1-1-1-1 -1 -1 0 0 0 0
Do |3 3 -1 -1-1-13 —-1-13 -1 —-10 0 0 0
Dyo|3 -31 -1 -11 -3 -11 3 —-11 0 0 0 0
D13 3 -1 -1-13 -1-1-1-13 —-10 0 0 0
Di|3 -31 -1 -1-31 -11 —-13 1 0 0 0 0
Dis|3 3 -1 -13 —-1-1-1-1-1 -13 0 0 0 0
D43 -31 -13 1 1 -11 -1 -1 -3 0 0 0 O
D53 3 -1 -1-1-1-13 3 -1 -1 -1.0 0 0 0
Dg|3 -31 -1 -11 1 3 -3 -1 -11 0 0 0 0
(B.15)

B.8. Character Table of the Group G,s. The group Gus has 8 conjugacy
classes and therefore it has 8 irreducible representations that are distributed ac-
cording to the following pattern:

a) 3 irreps of dimension 1, namely Dy, ..., D3,
b) 5 irreps of dimension 3, namely Dy, ..., Ds.

The character table is displayed below, where by € we have denoted the cubic
root of unity € = exp [2F i].

0 |Cy Co2 C3 Cy Cs Cs Cr Cs
Dif1 11 1 1 1 1 1
Dyl 1 1 1 1 1 € €
Dy|1 1 1 1 1 1 € e
Ds|3 3 —-1-1-1-10 0 (B.16)
Ds|3 -1 -1-13 —-10 0
D¢|3 -1 -1-1-13 0 0
D3 -13 —-1-1-10 0
Dg|3 -1 -13 —-1-10 0

B.9. Character Table of the Group Gi5. The group Gig is Abelian with or-
der 16. Therefore it has 16 conjugacy classes and 16 one-dimensional irreducible
representations. The character table is displayed below.
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0 C1 C2 C3 C4 C5 Cg C7 Cg Cg Cro C11 C12 C13 C1a Ci15 Ci6
D;yj1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b1 1 1 1 1 1 1 1 -1-1 -1 -1 -1 -1 -1 -1
D31 1 1 1 —-1-1-1-11 1 1 1 -1 -1 -1 -1
Dyj1 1 1 1 -1-1-1-1-1-1 -1 -1 1 1 1 1
Ds |1 1 -1-1-1-11 1 1 1 -1 -1 -1 -1 1 1
Dg 1 1 -1 -1-1-11 1 —-1-11 1 1 1 -1 -1
D1 1 -1-11 1 —-1-11 1 -1 -1 1 1 -1 -1
Dgft 1 -1-11 1 -1-1-1-11 1 -1 -1 1 1 (B.17)
Dg |1 -11 -11 -11 -11 -11 -1 1 -1 1 —1
Dyt -11 -11 —-11 -1-11 -1 1 -1 1 -1 1
D17 -11 -1-11 -11 1 -1 1 -1 -1 1 -1 1
Dyl -11 —-1-11 -11 -11 -1 1 1 -1 1 —1
Dyt -1 -11 -11 1 —-11 -1 -1 1 -1 1 1 —1
Dyt -1-11 -11 1 —-1-11 1 -1 1 -1 -1 1
Dysj1 -1-11 1 —-1-11 1 -1 -1 1 1 -1 -1 1
Dyl -1-11 1 —-1-11 -11 1 -1 -1 1 1 —1

B.10. Character Table of the Group GSs2. The group GSs2 has 14 conju-
gacy classes and therefore it has 14 irreducible representations that are distributed
according to the following pattern:

a) 8 irreps of dimension 1, namely Dy, ..., Ds,
b) 6 irreps of dimension 2, namely Dy, ..., D14.

The character table is displayed below,

0 Ci1 Cy C3 Cq4 C5 Cg C7 Cg Cyg Cip C11 Ci2 Ciz Cia
Dy |1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doy |1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1
D3 |1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1
Dy |1 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1
Ds |1 1 1 1 -1 1 1 -1 -1 -1 -1 1 -1 1
Dg |1 1 1 1 -1 1 1 -1 -1 1 1 -1 1 -1
D;f1 1 1 1 —-1-1-11 1 -1 -1 1 1 -1 (B.18)
Dg |1 1 1 1 -1 -1 -1 1 -1 1 -1 -1 1
Dg |2 2 -2 -22 0 0 0 0 -2 0 0 0 0
Dip|2 2 -2 -2 =20 0 0 0 2 0 0 0 0
D12 -2 =2 2 0 0 0 2 -2 0 0 0 0 0
D122 =2 2 -2 0 2 -2 0 0 0 0 0 0
D13 |2 -2 2 -2 0 -2 2 0 0 0 0 0 0
Dis|2 -2 -2 2 0 0 0 -2 2 0 0 0 0 0
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B.11. Character Table of the Group GP34. The group GP24 has 8 conju-
gacy classes and therefore it has 8 irreducible representations that are distributed
according to the following pattern:

a) 6 irreps of dimension 1, namely Dy, ..., Dg,

b) 2 irreps of dimension 2, namely D7, Ds.

The character table is displayed below,

0 |Ci C2 C3 Ci Cs Cs Cr Cs

Dy|1 1 1 1 1 1 1 1

Dy|1 1 1 1 (=123 (=123 =1 ¥y

D3 |1 1 1 1 — =1 —Y=1  (-1)%/3 (—1)2/3

Dy|1 -1 -1 1 -1 1 -1 1 (B.19)
Ds |1 -1 -1 1 —(=1)%3 (-1%3 =1 ¥y

Dg |1 -1 -1 1 V-1 —Y=1 —(—1)2/3 (—1)2/3

D;|3 3 -1 -1 0 0 0 0

Dg|3 -3 1 -1 0 0 0 0

B.12. Character Table of the Group Ohyg. The group Ohyg is isomorphic to
the extended octahedral group and has 10 conjugacy classes. Therefore it has 10
irreducible representations that are distributed according to the following pattern:

a) 4 irreps of dimension 1, namely D1, ..., Dy,

b) 2 irreps of dimension 2, namely Ds, Dg,

¢) 4 irreps of dimension 3, namely D~, ... Dig.

The character table is displayed below,

0 Ci Cy C3 Ci4 Cs Cg¢ C; Cg Cog Cro
D1 1 1 1 1 1 1 1 1 1 1
Do 1 1 1 1 1 -1 -1 -1 -1 -1
D3 1 1 1 -1 -1 1 1 1 -1 -1
Dy 1 1 1 -1 -1 -1 -1 -1 1 1
Ds |2 -12 0 0 2 -1 2 0 0 (B.20)
Dg 2 -1 2 0 0 -2 1 -2 0 0
D7 3 0 -1 -1 1 3 0 -1 -1 1
Dg 3 0 -1 -1 1 -3 0 1 1 —1
Dy 3 0 -1 1 -1 3 0 -1 1 —1
Dio | 3 0 -1 1 -1 -3 0 1 -1 1
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B.13. Character Table of the Group GS24. The group GSa4 is isomorphic
to the proper octahedral group O24 and has 5 conjugacy classes. Therefore it
has 5 irreducible representations that are distributed according to the following
pattern:

a) 2 irreps of dimension 1, namely Dy, ..., Do,

b) 1 irrep of dimension 2, namely D3,

¢) 2 irreps of dimension 3, namely Dy, Ds.

The character table is displayed below,

0 Ci Cy C3 C4 Cs

Dy |1 1 1 1 1

Dy | 1 1 1 -1 -1 (B.21)
D3 | 2 -1 2 0 0

Dy | 3 -1 -1 1

Ds | 3 -1 1 -1

C. CLASSIFICATION OF THE MOMENTUM VECTORS AND OF THE
CORRESPONDING G536 IRREPS

In this section, we list the results obtained by means of a MATHEMATICA
computer code relative to decomposition into irreps of the representations of
the group Gis3¢ generated by the various octahedral group orbits of momentum
vectors. We find that there are five types of momentum vectors on the lattice:

A) Momenta of type {a, 0,0} which generate representations of the universal
group Giss¢ of dimensions 6.

B) Momenta of type {a, a,a} which generate representations of the universal
group Gis36 of dimensions 8.

C) Momenta of type {a, a,0} which generate representations of the universal
group Gis3g of dimensions 12.

D) Momenta of type {a, a,b} which generate representations of the universal
group Gisse of dimensions 24.

E) Momenta of type {a,b, c} which generate representations of the universal
group Gis3g of dimensions 48.

In each of the five groups one still has to reduce the entries to Z4, namely,
to consider their equivalence class mod 4. Each different choice of the pattern
of Z4 classes appearing in an orbit leads to different decomposition of the repre-
sentation into irreducible representation of Gy536. A simple consideration of the
combinatorics leads to the conclusion that there are in total 48 cases to be consid-
ered. The very significant result is that all of the 37 irreducible representations of
G536 appear at least once in the list of these decompositions. Hence for all the
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irrepses of this group one can find a corresponding Beltrami field and for some
irrepses such a Beltrami field admits a few inequivalent realizations.

In the sections below, we list the decompositions of the representations gen-
erated by all of the 48 classes of momentum vectors. The numbers 4u, 4v, 4p,
with p, v, p=0,%1,42, ..., represent the equivalence class of Z, integers.

C.1. Classes of Momentum Vectors Yielding Orbits of Length 6: {a,0,0}.
Class of the momentum vector = {0,0,1+ 4p}

Dimension of the G536 representation = 6
Orbit = Dgg[G1536, 6]

Class of the momentum vector = {0,0,2+ 4p}
Dimension of the G536 representation = 6
Orbit = D19[G1536, 6]

Class of the momentum vector = {0,0,3 + 4p}
Dimension of the G536 representation = 6
Orbit = Doy [G1536, 6]

Class of the momentum vector = {0,0,4 + 4p}
Dimension of the G536 representation = 6
Orbit = D7[Gis36, 3] + Ds[G1536, 3]

C.2. Classes of Momentum Vectors Yielding Orbits of Length 8: {a,a,a}.
Class of the momentum vector = {1 +4pu,1+4u,1+4pu}

Dimension of the G536 representation = 8
Orbit = D3 [G1536, 8]

Class of the momentum vector = {2+ 4p,2 +4u,2 + 4}
Dimension of the G536 representation = 8

Orbit = Ds[G1s36, 2] + D17[G1536, 3] + D18[G1536, 3]
Class of the momentum vector = {3 + 4,3 + 4u,3 + 4u}
Dimension of the G536 representation = 8

Orbit = D31[G1536, 8]

Class of the momentum vector = {4 + 4p, 4 + 4p, 4+ 4pu}
Dimension of the G536 representation = 8

Orbit = D5[Gis36,2] + D7[G1s36, 3] + Ds[Gis36, 3]

C.3. Classes of Momentum Vectors Yielding Orbits of Length 12: {a,a,0}.
Class of the momentum vector = {0,1+ 4v,1 + 4v}

Dimension of the G536 representation = 12
Orbit = D32[G1536, 12]

Class of the momentum vector = {0,2 + 4v,2 + 4v}
Dimension of the G536 representation = 12

Orbit = D13[G1s36, 3] + D15[G1s36, 3] + D20[G1536, 6]
Class of the momentum vector = {0,3 + 4v,3 + 4v}
Dimension of the G536 representation = 12

Orbit = D32[G1536, 12]
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Class of the momentum vector = {0,4 + 4v,4 + 4v}

Dimension of the G536 representation = 12

Orbit = D3[Gis36, 1] + D5[Gus36, 2] + D7[G1s36, 3] + 2Ds[G1536, 3]

C.4. Classes of Momentum Vectors Yielding Orbits of Length 24: {a,a,b}.

Class of the momentum vector = {1 + 4p,1+4u,2+ 4p}

Dimension of the G536 representation = 24

Orbit = D34[G1s36, 12] + D35[G1536, 12]

Class of the momentum vector = {1 + 4pu, 1 +4u,3 + 4p}

Dimension of the G536 representation = 24

Orbit = Dag[G1536, 8] + D30[G1536, 8] + D31[G1536, 8]

Class of the momentum vector = {1 + 4p,1+4u,4+ 4p}

Dimension of the G536 representation = 24

Orbit = D33[G1s36, 12] + D33[G1s36, 12]

Class of the momentum vector = {1 + 4pu, 1 +4u, 5+ 4p}

Dimension of the G536 representation = 24

Orbit = Dag[G1536, 8] + D30[G1536, 8] + D31[G1536, 8]

Class of the momentum vector = {1 + 4,2+ 4u,2 + 4p}

Dimension of the G536 representation = 24

Orbit = Da5[G1s36, 6] + D26[G1s36, 6] + D27[G1536, 6] + D2g[Gis36, 6]

Class of the momentum vector = {2 + 44,2 + 4u,6 + 4p}

Dimension of the G536 representation = 24

Orbit = D3[Gis36, 1] + D4[Gis36, 1] + 2D6[G1s36, 2] + 3D17[G1536, 3]+
+ 3D15[G1536, 3]

Class of the momentum vector = {2 + 4,2 + 4u,3 + 4p}

Dimension of the G536 representation = 24

Orbit = Da5[G1s36, 6] + Da26[G1536, 6] + D27[G1536, 6] + D2g[Gis36, 6]

Class of the momentum vector = {2 + 4p,2 + 4u, 4+ 4p}

Dimension of the G536 representation = 24

Orbit = D13[G1s36, 3] + D14[G1536, 3] + D15[G1536, 3] + D16[G1536, 3]+
+ 2D30[G1536, 6]

Class of the momentum vector = {1 + 4,3 + 4u,3 + 4p}

Dimension of the G536 representation = 24

Orbit = Dag[G1s36, 8] + D30[G1536, 8] + D31[G1536, 8]

Class of the momentum vector = {2 + 4p,3 + 4u, 3+ 4p}

Dimension of the G536 representation = 24

Orbit = D34[G1s36, 12] + D35[G1536, 12]

Class of the momentum vector = {3 + 4,3 + 4u, 7+ 4p}

Dimension of the G536 representation = 24

Orbit = Dag[G1536, 8] + D30[G1536, 8] + D31[G1536, 8]

Class of the momentum vector = {1 + 4p,4 +4u, 4+ 4p}

Dimension of the G536 representation = 24
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Orbit = D21 [Gi1s36, 6] + D22[G1536, 6] + D23[G1536, 6] + D24[G1536, 6]

Class of the momentum vector = {2 + 4p,4 + 4u, 4+ 4p}

Dimension of the G536 representation = 24

Orbit = Dg[Gis36,3] + D10[G1536, 3] + D11[G1s36, 3] + D12[G1536, 3]+
+ 2D19[G1536, 6]

Class of the momentum vector = {3 + 4u,4 + 4u,4 + 4p}

Dimension of the G536 representation = 24

Orbit = D21 [Gi1s36, 6] + D22[G1s36, 6] + D23[G1536, 6] + D24[G1536, 6]

Class of the momentum vector = {4 + 4u,4 + 4u, 8 + 4p}

Dimension of the G536 representation = 24

Orbit = D1[Gis36, 1] + D2[Gus36, 1] + 2D5[Gis36, 2] + 3D7[G1536, 3]+
+ 3D3[G1s36, 3]

Class of the momentum vector = {3+ 4p,3 +4u, 4+ 4p}

Dimension of the G536 representation = 24

Orbit = D32[G1536, 12] + D33[G1536, 12]

C.5. Classes of Momentum Vectors Yielding Point Orbits of Length 24 and

G536 Representations of Dimensions 48: {a,b, c}.

Class of the momentum vector = {4 + 4, 8 + 4v, 12 4+ 4p}

Dimension of the G536 representation = 48

Orbit = 2D1[G1s36, 1] + 2D2[G1536, 1] + 4D5[G1536, 2] + 6D7[G1536, 3]+
+ 6D3[G1536, 3]

Class of the momentum vector = {1 + 4u, 4 + 4v,8 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D51[G1536, 6] + 2D22[G1536, 6] + 2D23[G1536, 6] + 2D24[G1536, 6]

Class of the momentum vector = {2 + 4p,4 + 4v, 8 + 4p}

Dimension of the G536 representation = 48

Orbit = 2Dy[Gis36, 3] + 2D10[G1s36, 3] + 2D11[G1536, 3] + 2D12[G1536, 3]+
+ 4D19[G1536, 6]

Class of the momentum vector = {3 + 4u, 4 + 4v,8 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D51[G1536, 6] + 2D22[G1536, 6] + 2D23[G1536, 6] + 2D24[G1536, 6]

Class of the momentum vector = {1 + 4,2+ 4v,4 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D36[G15367 12] + 21)37[6}15'3,67 12]

Class of the momentum vector = {1 + 4,3 + 4v,4 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D32[G15367 12] + 21)33[Grlggﬁ7 12]

Class of the momentum vector = {2 + 4u, 4 + 4v,6 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D13[G1536, 3] + 2D14[G1536, 3] + 2D15[G1536, 3] + 2D16[G1536, 3]+
+4D30[G1536, 6]
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Class of the momentum vector = {2 + 4,3 + 4,4 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D36[G15367 12] + 21)37[6}15'3,67 12]

Class of the momentum vector = {1 + 4u, 5+ 4v,9 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D29[G1536, 8] + 2D30[G1536, 8] + 2D31[G1536, 8]

Class of the momentum vector = {1 + 4p,2 + 4v,5 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D34 [G1536, 12] + 2D35[G1536, 12]

Class of the momentum vector = {1 + 4u, 3 + 4,5+ 4p}

Dimension of the G536 representation = 48

Orbit = 2D29[G1536, 8] + 2D3g [G1536, 8] + 2D31[G1536, 8]

Class of the momentum vector = {1 + 4u, 2+ 4v,6 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D25[G1536, 6] + 2D26[G1536, 6] + 2D27[G1536, 6] + 2D28[G1536, 6]

Class of the momentum vector = {1 + 4p,2 + 4v,3 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D34 [G1536, 12] + 2D35[G1536, 12]

Class of the momentum vector = {1 + 4p,3 + 4v, 7+ 4p}

Dimension of the G536 representation = 48

Orbit = 2D29[G1536, 8] + 2D3g [G1536, 8] + 2D31[G1536, 8]

Class of the momentum vector = {2 + 4y, 6 + 4v,10 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D3[G1s36, 1] + 2D4[G1536, 1] + 4Dg[G1536, 2] + 6D17[G1536, 3]+
+ 6D13[G1536, 3]

Class of the momentum vector = {2 + 4,3 + 4v,6 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D5[G1536, 6] + 2D26[G1536, 6] + 2D27[G1536, 6] + 2D28[G1536, 6]

Class of the momentum vector = {2 + 4p,3 + 4v, 7+ 4p}

Dimension of the G536 representation = 48

Orbit = 2Ds3y [G1536, 12] + 2D35[G1536, 12]

Class of the momentum vector = {3 + 4y, 7 + 4v,11 + 4p}

Dimension of the G536 representation = 48

Orbit = 2D29[G1536, 8] + 2D3g [G1536, 8] + 2D31[G1536, 8]

Class of the momentum vector = {1 + 4u, 4+ 4v,5+ 4p}

Dimension of the G536 representation = 48

Orbit = 2D32[G15367 12] + 21)33[Grlggﬁ7 12]

Class of the momentum vector = {3 + 4p,4 + 4v, 7+ 4p}

Dimension of the G536 representation = 48

Orbit = 2D32[G15367 12] + 21)33[Grlggﬁ7 12]
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D. BRANCHING RULES OF G536 IRREPS

In this section, we present the branching rules of all of the 37 irreducible
representations of the Universal Classifying Group Gis3¢ with respect to all of
its 16 subgroups mentioned in Appendix A, namely:

1) Gres; 5) Gioz;  9) GFig2; 13) GSay;

2) Gase; 6) Gos; 10) GFog;  14) GPay; D.1)
3) Gias; 7) Gug; 11) GFy4s;  15) Oay;

4) Gga; 8) Gis; 12) GS32; 16) Ohys.

The information contained in the following tables adjoined with the information
provided in the tables of Appendix C allows one to spot all cases of the Beltrami
vector fields invariant under some group of symmetries including (or not includ-
ing translations), namely the appearance of a D;(H, 1) representation for some
subgroup H C Gis36 in the branching rule of some D, (Giss6,y) irreducible
representation produced in one of the momentum vector orbits classified in Ap-
pendix C. Looking at those tables one realizes that all 37 irreps of G536 appear
at least once. Hence any identity representation appearing in any of the following
branching rules corresponds to an existing H-invariant Beltrami vector field.
D.1. Branching Rules of the Irreprs of Dimension 1 and 2.

D [Gisse, 1] = D1[Gs, 1]
D1 [Gisse, 1] = D1[Gug, 1]
D1 [Gisse, 1] = D1[Gea, 1]
D [Gisse, 1] = D1[Gos, 1]
D [Gisze, 1] = D1[G12s, 1]
D [Gis3e, 1] = D1[G1g2, 1]
D1 [Gisse, 1] = D1[Gase, 1]
D1 [Gisse, 1] = D1[Gres, 1]
D1 [Gisse, 1] = D1[GFyg, 1]
D [Gisse, 1] = D1[GF 192, 1]
D [Gis36, 1] = D1[GFgg, 1]
D1 [Gisse, 1] = D1[GP2q4, 1]
D1 [Giss6,1] = D1[GSa4, 1]
D1 [Giss6, 1] = D1[GS32, 1]
D1 [Gis3s, 1] = D1][O24, 1]
D [Gisse, 1] = D1[Ohyg, 1]
Dy [Gis36,1] = D1[Gs, 1]
Do [Gis36, 1] = D1[Gug, 1]
Do [Giss6, 1] = D1[Gea, 1]
Dy [Gis36,1] = D1[Gos, 1]
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4 [Gis36, 1] = D1][O24, 1]
4 [Gis36, 1] = D1[Ohysg, 1]
D5 [Gis36,2] = 2D1[Gs, 1]
D5 [Gis36,2] = D2[Gys, 1] 4+ D3[Gys, 1]
D5 [Gis36,2] = 2D1[Geu, 1]
D5 [Gisss, 2] = D3[Gog, 1] + D5[Gog, 1]
5 [Gis36,2] = 2D1[G12s, 1]
5 [G1s36, 2] = D17[G1o2,2]
5 [G1s36, 2] = 2D1[Gase, 1]
5 [G1s36, 2] = D2[Gres, 1] + D3[Gres, 1]
5 [Giss6, 2] = D2[GFys, 1] + D3[GF4s, 1]
D5 [Gis36,2] = D17[GF192,2]
D5 [Gis36,2] = D3[GFgg, 2]
D5 [Gis36,2] = D2[GPay4, 1] + D3[GPoy, 1]
5 [G1s36, 2] = D3[GS24,2]
5 [Gis36,2] = D1[GSs2,1] + D2[GS32, 1]
D5 [Gis36,2] = D3[024, 2]
5 [G1s36, 2] = D5[Ohys, 2]
6 [G1s36,2] = 2D1[Gys, 1]
6 [G1s36,2] = D2[Gus, 1] + D3[Gys, 1]
D¢ [Gis36,2] = 2D43(Gea, 1]
Dg [Gis36,2] = D3[Gog, 1] + D5[Gog, 1]
D¢ [Gis36,2] = 2D29[Gi2s, 1]
6 [G1s36, 2] = D17[G192,2]
6 [G1536, 2] = 2D29[Gase, 1]
6 [G1s36, 2] = D5[Gres, 1] + Dg[Gres, 1]
6 [Gis36,2] = D2[GFys,1] + D3[GF4s,1]
6 [Gis36,2] = D17[GF 192, 2]
6 [G1s36,2] = D3[GFgg, 2]
D¢ [G1s36,2] = D2[GPay4, 1] + D3[GPoy, 1]
Dg [Gis36,2] = D3[GSa4, 2]
D¢ [Gis36,2] = D1[GS32,1] + D2[GS32,1]
6 [Gis36,2] = D3[O24,2]
6 [G1s36, 2] = D5[Ohys, 2]

D.2. Branching Rules of the Irreps of Dimensions 3.
D7 [Gisse,3] = D2[Gie, 1] + D3[Gie, 1] + D4[Gg, 1]

D7 [Gis36,3] = D4[Gus, 3]

D7 [Gis36,3] = 3D1[Geu, 1]

D7 [Gis36,3] = Dg[Gog, 3]

D7 [Gis36,3] = D1[Gi2s, 1] +2D2[G12g, 1]
D7 [Gis36, 3] = Dg[G1g2, 3]
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D7 [Giss6,3] = D2[Gase, 1] + D3[Gase, 1] + D4[Gase, 1]
D7 [Gis36,3] = D7[Gres, 3]

D7 [Gis36,3] = D4[GF s, 3]

D7 [Giss6,3] = Dg[GF192, 3]

D7 [Gis3s, 3] = D4[GFgg, 3]

D7 [Gis36,3] = D7[GPay, 3]

D7 [Gis36, 3] = D5[GS24, 3]

D7 [Gis36,3] = D3[GSs2,1] + Dg[GS32, 2]

D7 [Gis36,3] = D5[O24, 3]

D7 [Gis36, 3] = Dg[Ohys, 3]

Dsg [Gis36,3] = D2[Gig, 1] + D3[Gie, 1] + D4[Gg, 1]
Ds [Gis36, 3] = D4[Gus, 3]

Dg [G1s36,3] = 3D1[Geus, 1]

Dg [G1s36,3] = Dg[Gog, 3]

Dg [Gis36,3] = D1[Gi2s, 1] +2D2[G1og, 1]

Ds [Gis36, 3] = D7[G1g2, 3]

Dg [Gis36,3] = D2[Gase, 1] + D3[Gase, 1] + D4[Gase, 1]
Dg [G1s36,3] = D7[Gres, 3]

Dg [Gis36,3] = D4[GF s, 3]

Dg [G1s36,3] = D7[GF192, 3]

Ds [Gis36, 3] = D5[GFgg, 3]

Dg [Gis36,3] = D7[GPaq, 3]

Ds [Gis36, 3] = D4[GS24, 3]

Dg [G1s36,3] = D4[GSs2,1] + Dy[GS32, 2]

Dg [G1s36,3] = D4[O24, 3]

Ds [G1s36, 3] = D7[Ohys, 3]

Dy [G1s36,3] = 3D1[G1g, 1]

Dy [Gis36,3] = D1[Gus, 1] + D2[Gus, 1] + D3[Gus, 1]
Dy [Gis36,3] = D3[Gea, 1] + Dg[Gea, 1] + D33[Gea, 1]
Dy [Gis3e, 3] = D1[Gog, 1] + D3[Gog, 1] + D5[Gog, 1]
Dy [Gis36,3] = D5[Gigs, 1] + D9[Gi2s, 1] + D17[Gi2s, 1]
Dy [Gis36,3] = D1[G1g2, 1] + D17[G1g2,2]

Dy [Gis36,3] = D5[Gase, 1] + Dg[Gase, 1] + D17[Gase, 1]
Dy [G1536,3] = Ds[Gres, 3]

Dy [Gis36,3] = D1[GFus, 1] + D2[GF4s, 1] + D3[GF s, 1]
Dy [G1s36,3] = D2[GF192,1] 4+ D17[GF 192, 2]

Dy [G1s36,3] = D2[GF g6, 1] + D3[GFgg, 2]

Dy [G1536,3] = D1[GPay4, 1] + D2[GPay4, 1] + D3[GP2a4, 1]
Dy [Gis36,3] = D2[GSa4,1] + D3[GSa4, 2]

Dy [G1s36,3] = 2D1[GS32, 1] + D2[GS32, 1]

Dy [G1s36,3] = D1[O24, 1] + D3[O24, 2]

Dy [Gis36,3] = D1[Ohyg, 1] + D5[Ohyg, 2]
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Do [Gis36,3] = 3D1[Gis, 1]

D1 [Gis36, 1[Guas, 1] + D2[Gusg, 1] + D3[Gys, 1]
D1 [G1s36, 3[Ge4, 1] + Do[Gea, 1] + D33[Gea, 1]
D1 [Gis36, 1[Gos, 1] + D3[Gog, 1] + D5[Gos, 1]
D1 (G536, 5(Gi2s, 1] + Dg[Gi2s, 1] + D17[G12s, 1]
D1 [Gi1s36, 2[G1g2, 1] + D17[G192, 2]

D1 [Gis3s,
D1 [Gisa3s,
D1 [Gisa3s,

1]
1]
5(Gase, 1] + Do[Gase, 1] + D17[Gase, 1]
s[Gres, 3]

GFys, 1] + Doy [GF48, 1] + Dg [GF48, ].]

[ 3

[ 3 =D

[ 3] = Ds|

[ 3] = Di

[ 3] = Ds]

[ 3] = Do

[ 3] = Ds|

[ 3] = Ds|

[ 3] = Dy
Do [Gis36,3] = D1[GF192,1] + D17[GF192, 2]
Dy [G1535, 3] = Dl[GFgﬁ, 1] + D3 [GFQG, 2]
D19 [Gis36,3] = D1[GPay4, 1] + D2[GPaq4, 1] + D3[GPa4, 1]
Do [G1s36,3] = D1[GSa24, 1] 4+ D3[GSo4, 2]
Do [Gis36,3] = D1[GS32, 1] 4+ 2D3[GS32, 1]
Do [Gis36,3] = D2[O24, 1] + D3[O24, 2]
Dy [G1535, 3] = D3[0h487 1] + Ds [Oh4g, 2]
D11 [Gisse, 3] = D2[Gig, 1] + D3[Gig, 1] + D4[Gs, 1]
D11 [Gis36, 3] = D4[Gus, 3]
D11 [Giss6, 3] = D3[Gea, 1] + Dg[Gea, 1] + D33[Gea, 1]
D11 [Giss6, 3] = Dg[Goe, 3]
D11 [Gis36,3] = D5[Giss, 1] + D10[Gizs, 1] + D1g[G2s, 1]
D11 [Gis36, 3] = D7[G1oe, 3]
D11 [Gisse, 3] = Dg[Gase, 1] + D11[Gase, 1] + D2o[Gase, 1]
D11 [Gis36, 3] = Dg|Gres, 3]
D11 [Giss6, 3] = D4[GFys, 3]
D11 [Gisse, 3] = Dg[GF192, 3]
D11 [Gis36,3] = D4[GFgg, 3]
D11 [Gisse, 3] = D7[GPay, 3]
D11 [Gis36,3] = D5[GSa4, 3]
D11 [Gis36, 3] = Dy4[GS32, 1] 4+ Dg[GS32, 2]
D11 [Gis36,3] = D4[O24, 3]
D11 [Gis36,3] = D7[Ohys, 3]
D2 [Gis36, 3] = D2[Gig, 1] + D3[Gig, 1] + D4[Gs, 1]
D12 [Gis36,3] = D4[Gus, 3]
D12 [Gis36, 3] = D3[Gea, 1] + Dg[Gea, 1] + D33[Gea, 1]
D12 [Gis36, 3] = Dg[Goe, 3]
D12 [Gis36,3] = D5[Gias, 1] + D10[Gi2s, 1] + D18[G12s, 1]
D12 [Gis36, 3] = Dg[Gioz, 3]
D12 [Gis36,3] = Dg[Gase, 1] + D11[Gase, 1] + D2g[Gase, 1]
D12 [Gis36, 3] = Dg[Gres, 3]
D12 [Gis36, 3] = D4[GF4s, 3]
D2 [Gis36,3] = D7[GF192, 3]



1090 FRE P., SORIN A.S.

D2 [Gis36,
D12 [Gis36,
D12 [Gis36,
D12 [Gis36,
D12 [Gis36,
D2 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D13 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D14 [Gis36,
D15 [Gis3e,
D15 [Gis36,
D15 [Gis36,
D5 [Gis3e,

3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =

3D1[G1s, 1]

D1[Gys, 1] + D3[Guys, 1] + D3[Gus, 1]

D11[Gea, 1] + D35[Gea, 1] + D41 [Ges, 1]
D1[Gog, 1] 4+ D3[Gogg, 1] + D5[Gog, 1]
D13[Gi2s, 1] + D21[Gi2g, 1] + D25[G1as, 1]
D5[G192,1] + D17[G192, 2
D13[Gase, 1] + D21 [Gase, 1] + Das[Gase, 1]
D13[Gres, 3]
Dl[GF48, 1] + Do [GF48, 1] + D3 [GF48, ].]
D5[GF192, 1] + D17[GF192, 2]
Do [GFQG, 1] + Dsg [GFQG, 2]
D1[GPay4, 1] + D2[GPa4, 1] + D3[GPay, 1]
Doy [GSQ4, 1] + D3 [GSQ4, 2]
Dl[GS32, 1] + 2Ds [GS?,Q, 1]
D3[024, 1] + D3[O24, 2]
D3 [Oh487 ] + Ds [Oh4g, 2]
3D1[Gis, 1]
D1[Gusg, 1] + D2[Gus, 1] + D3[Gus, 1]
D11[Gea, 1] + D35[Gea, 1] + Da1[Gea, 1]
D1[Gog, 1] 4+ D3[Gogg, 1] + D5[Gog, 1]
D13[Gi2s, 1] + D21[Gi2g, 1] + D25[G1as, 1]
D1[G192,1] + D17[G192, 2
D13[Gase, 1] + D21[Gase, 1] + Das[Gase, 1]
D15[Grgs, 3]
D1 [GF4s,1] + D2[GF4s,1] + D3[GF 45, 1]
D1[GF192, 1] + D17[GF 192, 2]
Dl[GFgﬁ, 1] + Dsg [GFQG, 2]
D1[GPay4, 1] + D3[GPa4, 1] + D3[GPay, 1]
Dl[GSQ4, 1] + D3 [GSQ4, 2]

[GS;),Q, ] + Doy [GS?,Q, 1]

D [O24,1] + D3[024, 2]
D1[Ohyg, 1] + D5[Ohys, 2]
D5[Gig, 1] 4 D3[Gye, 1] + D4[Gis, 1]
D4[Gus, 3]
D11[Gea, 1] + D35[Gea, 1] + Da1[Gea, 1]
Dg[Goys, 3]
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D15 [Gis36,3] = D14[Gias, 1] + D22[G2s, 1] + D25s[G12s, 1]
D15 [Gis36, 3] = D7[G1g2, 3]

D15 [Giss6, 3] = D16[Gase, 1] + D23 [Gase, 1] + Da2g[Gase, 1]
D15 [Giss6, 3] = D15[Gres, 3]

D15 [Gis36,3] = Dy[GFys, 3]

D15 [Gis36,3] = D7[GF192, 3]

D15 [Gis36, 3] = D5[GFgg, 3]

D15 [Giss6, 3] = D7[GPay, 3]

D15 [Gis36,3] = D4[GSa4, 3]

D15 [Gis36,3] = D4[GS32, 1] + Dy[GS32, 2]

D15 [Gis36,3] = Dy[O24, 3]

D15 [Gis36,3] = D7[Ohyg, 3]

D16 [Gis36, 3] = D2[Gie, 1] + D3[Gig, 1] + D4[G1g, 1]

D16 [Gis36, 3] = D4[Gus, 3]

D16 [Gis36, 3] = D11[Gea, 1] + D35[Gea, 1] + Da1[Gea, 1]
D16 [Gis36, 3] = Dg[Gos, 3]

D16 [Gis36,3] = D14[Gi2s, 1] + D22[G12s, 1] + D25[G12s, 1]
D16 [Gis36, 3] = Dg[G1g2, 3]

D16 [Gis36, 3] = D16[Gase, 1] + D23[Gase, 1] + Da2g[Gase, 1]
D16 [Gis36, 3] = D15[Gres, 3]

D16 [Gis36,3] = D4[GFys, 3]

D16 [Gis36,3] = Dg[GF192, 3]

D16 [Gis36,3] = D4[GFgg, 3]

D16 [Gis36, 3] = D7[GPay, 3]

D16 [Gis36,3] = D5[GSa4, 3]

D16 [Gis36,3] = D3[GSs2, 1] + Dg[GS32, 2]

D16 [Gis36,3] = D5[024, 3]

D16 [G1s36,3] = Dg[Ohyg, 3]

D17 [Giss6, 3] = D2[Gie, 1] + D3[Gig, 1] + D4[G1g, 1]

D17 [Gis36, 3] = D4[Gus, 3]

D17 [Gis36, 3] = 3D43[Gea, 1]

D17 [Gis36,3] = Dg[Gos, 3]

D17 [Gis36,3] = Dag[Gias, 1] + 2D30[G12s, 1]

D17 [Gis36, 3] = D7[G1g2, 3]

D17 [Giss6, 3] = D30[Gase, 1] + Ds1[Gase, 1] + D32[Gase, 1]
D17 [Gis36, 3] = D16[Gres, 3]

D17 [Gis36,3] = D4[GFys, 3]

D17 [Gis36,3] = Dg[GF192, 3]

D17 [Gis36,3] = D4[GFgg, 3]

D17 [Giss6, 3] = D7[GPay, 3]

D17 [Gis36,3] = D5[GSa4, 3]

D17 [Gisse, 3] = D4[GS32, 1] + Dy[GS32, 2]
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D17 [Gis3e,
D17 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,
D15 [Gis36,

3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =
3] =

D4[024, 3]
D7[Ohyg, 3]
D3[Gig, 1] + D3[Gig, 1] + D4[Gg, 1]
4[Gas, 3]
Dy3[Gea, 1]
8[Gos, 3]
29[G12s, 1] + 2D30[G12s, 1]
8[G192, 3]
D30[Gase, 1] + Ds31[Gase, 1] + D32[Gase, 1]
D16[Ges, 3]
4[GrF4g7 3]
7[GF 192, 3]
S[GF967 3]
7[GPay, 3]
[
[
[
[

U

OJ

wa

wabb

1[GS24, 3]
3[GS32, 1] + Dg[GS32, 2]
5 0245 3]

D
D
Dy[Ohys, 3]

D.3. Branching Rules of the Irreps of Dimensions 6.
D19 [Gis36,6] = 2D2[G1e, 1] + 2D3[G1g, 1] + 2D4[G1e, 1]

D19 [G1536, 6]

6]
D19 [G1536, 6]
D19 [G1536, 6]

6]
6]

[
Dig {G1536,
[

D19 [G1536,
D19 [G1536,

D19 [G1s36,
D19 [G1s36,
D19 [Gis36,
D19 [Gis36,
D19 [G1s36,
D19 [G1s36,
D19 [G1s36,
D19 [Gis36,
D19 [Gis36,
Dy [Gis36,
Do [G1s36,
Do [G1s36,
Dy [Gis36,

6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =

= 2D4[G487 3]
= 2D3 [G64, 1] =+ 2Dg [G64, 1] + 2D33[G64, 1]
= 2Dg[Goyg, 3]
= 2Dg[Gi2s, 1] + Dy[Gi2s, 1] + D1o[Gi2s, 1] + D17[Gis, 1]+
+ D13[G12s, 1]
= D7[G1g2, 3] + Dg[Gig2, 3]
= D7[Gase, 1] + Dg[Gasg, 1] + D1o[Gase, 1] + D12[Gase, 1] +
+ D13[Gase, 1] + D19[Gase, 1]
D10[Gres, 3] + D11[Gres, 3]
= 2D4[GF48, ]
D7[GF 192, 3] + Dg[GF 192, 3]
Dy [GFQG, 3] + Ds [GFQG, 3]
2D7[GPay, 3]
Dy [GSQ4, 3] + Ds [GSQ4, 3]
D3[GS;32, 1] + D4[G832, 1] + 2D9[G832, 2]
D4[O24, 3] + D5[024, 3]
D [Oh487 ] + Dy [Oh4g, 3]
= 2D2[G167 ] =+ 2D3[G15, 1] + 2D4[G16, 1]
= 2D4[Gus, 3]
= 2D11[Ges, 1] + 2D35[Gea, 1] + 2D41[Gea, 1]
= 2Dg[Ggg, 3]
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Dy [Gis36,6] = D13[G12s, 1] + D14[Gi2s, 1] + D21[Ga2s, 1] +

+ D23[G12s, 1] 4+ 2D26[Gi12s, 1]

Dy [Gis36,6] = D7[Gig2, 3] + Ds[Gig2, 3]
Do [Gis36,6] = D14][Gase, 1] + D15[Gase, 1] + Da2[Gase, 1] + Da2a[Gase, 1] +

Dy [Gis36,
Dy [Gis36,
Do [G1s36,
Do [G1s36,
Dy [Gis36,
Dy [Gis36,
Dy [Gis36,
Do [G1s36,
Do [G1s36,
D31 [Gis36,

6]
6]
6]
6]
6]
6]
6]
6]
6]
6]

+ D27[Gase, 1] + Dag[Gase, 1]
D13[Gres, 3] + D14[Gres, 3]

= 2D,[GF 45, 3]

D7[GF192, 3] + Dg[GF192, 3]
Dy [GFgG, 3] + Ds [GFQG, 3]

= 2D[GPy4, 3]

Dy [GSQ4, 3] + Ds [GSQ4, 3]

D3 [GS327 1] + D4 [G8327 1] + 2Dg [GSgQ, 2]

D4[O24, 3] + D5[O24, 3]

D7[Oh48, 3] + Dy [Oh48, 3]

Dg[Gig, 1] + D7[Gyg, 1] + Do[Gi6, 1] + D11[G1e, 1] +
+ D15[G1e, 1] + D16[G1g, 1]

D31 [Gis36,6] = Dg[Guas, 3] + D7[Gus, 3]
Ds1 [Gis36,6] = D2[Gea, 1] + D4[Gea, 1] + D5[Gea, 1] + D13[Gea, 1] +

D31 [Gis36,
D31 [Gis3e,
D31 [Gis3e,
D31 [Gis3e,
D31 [Gis36,
D31 [Gis36,
D31 [Gis3e,
D31 [Gis3e,
D31 [Gis3e,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis3e,
Dy3 [Gis36,

6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]

+ D17[Gea, 1] + Dyg[Ges, 1]

D12[Gogg, 3] + D14[Goe, 3]

D3[Giss, 1] + D7[Giss, 1] + D33[Gia2s, 2] + D37[Gi2s, 2]
D12[Gig2, 3] + D15[G192, 3]

D33[Gase, 2] + Da2[Gase, 2] + Das[Gase, 2]

D13[Gres, 6]

Dy [GF48, 3] + Dg [GF48, 3]

20[GF192, 6]

10[GF g6, 6]

4[GP24, 1] + Ds [GP24, 1] + Dg [GP24, 1] + Dg [GP247 3]
4[GSQ4, 3] + D5 [GSQ4, 3]

5[G832, 1] + Dg [GS;),Q, 1] + D12[GS32, 2] + D14[G832, 2]
2[O024, 1] + D3[O24, 2] + D5[O24, 3]

4[Ohyg, 1] + Dg[Ohysg, 2] + D19[Ohys, 3]

D¢[Gie, 1] + D7[Gig, 1] + Dg[G1g, 1] + D11[Gis, 1] +

+ D15[Gie, 1] + D16[G1e, 1]

D
D
D
D
D
D
D

D33 [Gi536,6] = Dg[Gus, 3] + D7[Gus, 3]
D93 [Gis36,6] = D2[Gea, 1] + D4[Gea, 1] + D5[Gea, 1] + D13[Gea, 1] +

Dy3 [Gis36,
Da3 [Gis36,
D33 [G1s36,
D33 [G1s36,
Dy3 [Gis36,

6]
6]
6]
6]
6]

+ D17[Gea, 1] + Dug[Gea, 1]

D12[Goe, 3] + D14[Gos, 3]

D3[Giss, 1] + D7[Giss, 1] + D33[Gia2s, 2] + D37[Gi2s, 2]
D11[G192, 3] + D16[G192, 3]

D33[Gase, 2] + Di2[Gase, 2] + Das[Gase, 2]

D33[Gres, 6]
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1536:
D22 [G1536a
D22 [G15365
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— 3]
D24 [Gi1536,6] = D4[O24, 3] + D5[O24,
Doy [Gq 36, 6] = D8[0h48, 3] -+ D10[0h48, 3]
Di: {GIZBG; 6] = Dg[Gie, 1] + D7[Gi6, 1] + Dg[G16, 1] + D11[G1s, 1] +

+ D15[Gi6, 1] + D16[G1se, 1]

D5 [Gis36,6] = Dg[Guas, 3] + D7[Gus, 3]
Dzz {G1536; 6] = Do7[Gea, 1] + D39[Gea, 1] + D42[Gea, 1] + D4a[Ges, 1] +

Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dos
Dog

G1536,
G1536,
G536,
G536,
G536,
G1536,
G1536,
G1536,
G536,
G536,
G1536,
G1536,
G1536,
G536,

6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]

+ Du7[Gea, 1] + Dsg [GGT 1]
= D12[Gog, 3] + D14[Gos, 3
= D;[Gus, 1]+ D31[Gizs, 1] + Da7[Gi2s, 2] + Ds5[Gi2s, 2]
= D12[G1g2, 3] + D15[G192, 3]
= D39[Gass, 2] + D51[Gase, 2] + Ds6[Gase, 2]
= Dag[Gres, 6]
= Ds [GF48, 3] + Dg [GF48, 3]
20[GF 192, 6]
0[GF g6, 6]
1[GP24, 1] 4+ D5[GP2aq4, 1] + Dg[GP24, 1] + Ds[GPa4, 3]
[GSa4, 3] + D5[GS24, 3]
S[CSoa. 1]+ DalGSaa. 1] + Dra[GSa,2] + DyaGSa 2
2[024,1] + D3[O24, 2] + D5[024, 3]
1[Ohys, 1] + Dg[Ohus, 2] + D1o[Ohas, 3]
= Ds[G16, 1] + D7[Gi6, 1] + Dy[G1g, 1] + D11[G1s, 1] +
+ D15[G16, 1] + D16[G1s, 1]

=D
=D
=D
=D
=D
=D
=D

Dy [Gis36,6] = Dg[Guas, 3] + D7[Gus, 3]
Dig {Giz%, 6] = D7[Gea, 1] + D39[Gea, 1] + D42[Ges, 1] + Dys[Ges, 1] +

+ Dy7[Ges, 1] + Ds9[Ges, 1]

- Gos, 3]
Dy [Gis36,6] = D12[Gos, 3] + D14[Gos,
Dzs [G1536,6] = Da7[Giag, 1] + D31[G12s, 1] + Dur[Gios, 2] +

D6 [G1s36,
D6 [G1s36,
D¢ [G1s36,
Dag [Gis36,
Dag [Gis36,
D¢ [G1s36,
D¢ [G1s36,
D¢ [G1s36,
Dag [Gis36,
Dag [Gis36,
Dag [Gis36,
Dy7 [Gis36,

6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]
6]

+ D55[G12s, 2]
= D11[G192,3] + D16[G192, 3]
= D39[Gase, 2] + D51[Gase, 2] + Dss[Gase, 2]
= Dog[Grgs, 6]
= D5[GF4s, 3] + Dg[GF s, 3]
= Dyy[GF 192, 6]
0[GF g6, 6]
zlx[GPzzL, 1] 4+ D5[GPaq4, 1] + Dg[GPa4, 1] + D3[GPay, 3]
[GSQ4, 3] + Ds [GSQ4, 3]
2[GS327 1] + D7[GS32, 1] + D12[GS32, 2] + D14[GSs32, 2]
1[O24, 1] + D3[O24, 2] + D4[O24, 3]
2[Ohug, 1] + Dg[Ohys, 2] + Dg[Ohys, 3]
= D5[Gig, 1] + Dg[Gig, 1] + D10[Gis, 1] + D12[G16, 1] +
+ D13[Gie, 1] + D14[Gse, 1]

=D
=D
=D
=D
=D
=D

Dy7 [Gis36,6] = D5[Guas, 3] + Dg[Gus, 3]
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Dy7 [Gis36,

Dy7 [Gis36,
Dy7 [Gis36,
Doz [Gis3e,
Dy7 [Gis3e,
Dy7 [Gis3e,
Dy7 [Gis36,
Dy7 [Gis36,
Doz [Gis3e,
Doz [Gis3e,
Doz [Gis3e,
Dy7 [Gis36,
Dy7 [Gis36,
Dy7 [Gis36,
Dsg [Gis36,

Dog [Gis36,
Dog [Gi536,

Dsg [Gis36,
Dsg [Gis36,
Dsg [Gis36,
Dg [G1s36,
Dog [G1s36,
Dsg [Gis36,
Dsg [Gis36,
Dsg [Gis36,
Dsg [G1s36,
Dsg [G1s36,
Dsg [G1s36,
Dsg [Gis36,
Dsg [Gis36,

6]

6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =

6]
6]

6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =
6] =

= Dy7[Gea, 1] + D39[Gea, 1] + Da2[Gea, 1] + Daa[Gea, 1] +
+ Dy7[Gea, 1] + Dsg[Gea, 1]
D10[Gog, 3] + D16[Goe, 3]
Dog[Gias, 1] + D32[G1ag, 1] + Da7[Gi2s, 2] + Ds5[Gi2s, 2]
D2o[G192, 6]
Dyo[Gase, 2] + Ds2[Gase, 2] + Ds5[Gase, 2]
D30[Gres, 6]
Dg [GF48, 3] + D7[GF48, 3]
D12[GF 192, 3] + D15[GF192, 3]
Dg [GFQG, ] + Dy [GFQG, 3]
= 2D8[GP24, ]
Dl[GSQ4, ] + D3 [GSQ4, 2] + Dy [GSQ4, 3]
D10[GS32,2] 4+ D11[GS32,2] + D13[GS32, 2]
D4[O24, 3] + D5[O24, 3]
Dg[Ohyg, 3] + D1¢[Ohys, 3]
D5[Gie, 1] + Dg[Gie, 1] + D10[Gig, 1] + D12[Gis, 1] +
+ D13[Gis, 1] + D14[Gs, 1]
= Ds [G48, 3] + Dg [G48, 3]
= Da7[Geu, 1] + D39[Gea, 1] + Du2[Ges, 1] + Daa[Gea, 1] +
+ Dy7[Gea, 1] + Dsg[Gea, 1]
D19[Gos, 3] + D16[Gos, 3]
Dos[Giss, 1] + D32[Gaas, 1] + Da7[Gi2s, 2] + Ds5[Gi2s, 2]
D2o[G192, 6]
D4o[Gase, 2]
30[G76s, 6]
6[GF48, 3] + 1)7[6}1:‘487 3]
11[GF192, 3] + D16[GF 192, 3]
D7[GF967 ] + Dg [GFQG, 3]
= 2Dg[GPay, 3]
D3[GSa4,1] 4+ D3[GSa4, 2] + D5[GS24, 3]
D10[GS32,2] 4+ D11[GS32,2] + D13[GS32, 2]
D4[O24, 3] + D5[024, 3]
Dg [Oh487 3] + D10[0h487 3]

+ D52[Gase, 2] + Ds5[Gase, 2]

b@b

D.4. Branching Rules of the Irreps of Dimension 8.
Dag [G1536, 8] = 2D1[G16, 1] =+ 2D2[G16, 1] +2D;3 [Glﬁ, 1] + 2D4[G16, ].]
Doy [G1536,8] = 2D1[Gus, 1] + 2D4[Gus, 3]

Doy [G1536,

8]

= Da2[Gea, 1] + D24[Gea, 1] + D30[Gea, 1] + D32[Gea, 1] +
+ D54[Gea, 1] + Ds6[Gea, 1] + De62[Gea, 1] + Desa[Gea, 1]

Doy [Gis36, 8] = 2D2[Ggg, 1] + 2D7[Gog, 3]

Dyg [G1536,
Doy [G1536,

8]
8]

= Dy2[Gias, 2] + D4a[G12s, 2] + D50[G12s, 2] + Ds2[G12s, 2]
= D3[Gig2, 1] + D4[G1g2, 1] + D5[G192, 3] + Dg[G192, 3]
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Dag [Gis36,
D9 [G1536,
D9 [G1536,
D9 [G1536,
Dag [G1s36,
Dag [Gis36,
Dag [Gis36,
D9 [G1536,

Dag [Gis36,
Dag [Gis36,
D3 [G1536,
D30 [G1s36,
D30 [G1s36,

D3 [G1536,
D3 [G1536,
D30 [G1s36,
D30 [G1s36,
D30 [G1s36,
D3 [G1536,
D3 [G1536,
D3 [G1536,
D30 [G1s36,
D30 [G1s36,
D3 [G1536,

D3 [G1536,
D30 [G1s36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis3e,

D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,
D31 [Gis36,

8]
8]
8]
8]
8]
8]
8]
8]

8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]
8]

8]
8]
8]
8]
8]
8]
8]
8]
8]

Deo[Gase, 4] + De2[Gase, 4]
D17[Gres, 4] + D2o[Gres, 4]
2D1[GF48, 1] + 2D4[GF48, 3]

= D3 [GF192, 1] + Dy [GF192, 1] + Ds [GF192, 3] + Dg [GF192, 3]
= D1[GFgs, 1] + D2[GF g6, 1] + D4[GF g6, 3] + D5[GF g, 3]

2D, [GP247 1] + 2Dg [GP247 3]

Dl[GSQ4, 1] + Do [GSQ4, 1] + Dy [GSQ4, 3] + D5 [GSQ4, 3]
D1[GS32, 1] + D2[GSs2, 1] + D3[GSs2, 1] + D4[GS32,1] +
+ 2D,[GS32, 2]

D1[O24, 1] + D3[O24, 1] + D4[O24, 3] + D5[024, 3]
D3[Ohys, 1] + D4[Ohys, 1] + Dg[Ohys, 3] + D10[Ohas, 3]
2D1[G167 1] + 2D2[G15, 1] + 2D;3 [G16, 1] + 2D4[G15, 1]
D5[Gusg, 1] + D3[Gus, 1] + 2D4[Gus, 3]

Do3[Gea, 1] + Doy[Gea, 1] + D30[Gea, 1] + D32[Ges, 1] +
+ D54[Gea, 1] + Ds6[Gea, 1] + De2[Gea, 1] + Dea[Gea, 1]
D4[Gog, 1] 4+ Dg[Gos, 1] + 2D7[Gog, 3]

Dy43[Giss, 2] + Daa[Gaas, 2] + Dso[Gi2s, 2] + Ds2[Gi2s, 2]
D5[G192, 3] + Ds[G192, 3] + D15[G192, 2]

Deo[Gase, 4] + De2[Gase, 4]

D18[Gres, 4] + D22 [Gres, 4]

D, [GrF4g7 1] + D3 [GF48, 1] + 2D4[GF48, 3]

D5[GF 192, 3] + Dg[GF 192, 3] + D13[GF 192, 2]

D3 [GFQG, 2] + Dy [GFQG, 3] + Ds [GF96, 3]

Dy [GP24, 1] + Dg [GP24, 1] + 2Dg [GP24, 3]

Ds [GSQ4, 2] + Dy [GSQ4, 3] + Ds [GSQ4, 3]

D1[GS32,1] + D2[GS32, 1] + D3[GS32, 1] + D4[GS32,1] +
+ 2Dy [GSgQ, 2]

D5[O24, 2] + D4[O24, 3] + D5[024, 3]

Dg [Oh48, 2] + Dg [Oh48, 3] + D10[0h48, 3]

2D1[G16, 1] + 2D2[G16, 1] + 2Dg [Glﬁ, 1] + 2D4[G16, ].]
D3[Gyg, 1] + D3[Gys, 1] + 2D4[Gus, 3]

D23[Gea, 1] + D24[Gea, 1] + D30[Gea, 1] + D32[Gea, 1] +
+ D54[Gea, 1] + Ds6[Gea, 1] + De2[Gea, 1] + Dea[Gea, 1]
D4[Gog, 1] + Dg[Gog, 1] + 2D7[Gogg, 3]

Dy3[Gias, 2] + D1a[Gi2s, 2] + Ds0[Gi2s, 2] + Ds2[Gias, 2]
D5[G192, 3] + Dg[G1o2, 3] + D13[G192, 2]

Deo[Gase, 4] + De2[Gase, 4]

19[G768, 4] + D21[Gres, 4]

Q[GrF4g7 1] + D3 [GF48, 1] + 2D4[GF48, 3]

5(GF192, 3] + D6[GF 192, 3] + D13[GF 192, 2]

3[GFgs,2] + D4[GF g6, 3] + D5[GF g, 3]
[

D
D
D
D
D5 GP24, 1] + DG [GP24, 1] + 2D8 [GP247 3]
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D31 [Gis36, 8] = D3[GSa4, 2] + D4[GS24, 3] + D5[GSaq, 3]

D3 [G1536, 8] = Dl[GS32, 1] + Do [GS;),Q, 1] + D3 [GS?,Q, 1] + D4[G832, 1] +
+ 2D,[GS32, 2]

D31 [Gis36,8] = D3[Oa4,2] + D4[O24, 3] + D5[024, 3]

D31 [Gis36, 8] = Dg[Ohys, 2] + Dg[Ohyg, 3] + D10[Ohys, 3]

D.5. Branching Rules of the Irreps of Dimension 12.

D35 [Gis36,12] = D5[Gig, 1] +Dg[G1e, 1] +D7[Ge, 1] +Ds[G1g, 1] +
+Dg[G16, 1] +D10[G16, 1] +D11[Gie, 1] +D12[G1s, 1] +
+ Di3[Gis, 1] + D14[Gis, 1] + D15[Gig, 1] + D16[Gs, 1]

D35 [Gis36, 12] = D5[Gus, 3] + Dg[Gus, 3] + D7[Gus, 3] + Dg[Gus, 3]

D35 [Gis36,12] = Dg[Gea, 1] + Dg[Gea, 1] + D14[Ges, 1] + D16[Gea, 1] +
+D15[Gea, 1] +D2o[Gea, 1] +D21[Gea, 1] +Dag[Gea, 1] +
+ Dso[Gea, 1] + Ds2[Gea, 1] + Ds3[Gea, 1] + De1[Gea, 1]

D3y [Gis36,12] = Dg[Gog, 3] + D11[Gos, 3] + D13[Gog, 3] + D15[Gos, 3]

D35 [Gis36, 12] = D34[G12g, 2] + D36[G12s, 2] + D3g[Gi2s, 2] +
+ Dyo[Gi2s, 2] + D41[Gi2s, 2] + Dag[Gi2s, 2]

D39 [Gis36,12] = Dg[Gigz, 3] + D13[G192, 3] + D19[G192, 6]

D35 [Gis36,12] = Ds7[Gase, 4] + Dsg[Gase, 4] + Dsg[Gase, 4]

D35 [Gis36, 12] = D31[Gres, 12]

D3y [Gis36,12] = D5[GF4s, 3] +Dg[GF4s, 3] +D7[GF4s, 3] +Dg[GF4s, 3]

D39 [Gis36,12] = Dg[GF192, 3] + D13[GF192, 3] + D19[GF192, 6]

D3y [G1535, 12] = Dg [GFgG, 3] + Dg [GF96, 3] =+ Dlo[GFgﬁ, 6]

D3y [G1536, 12] = Dl[GP24, 1] + Do [GP247 1] + D3 [GP24,1] + 3D7[GP24,3]

Dso [G1536, 12] =Dy [GSQ4, 1] + D3 [GSQ4, 2] + 2Dy [GSQ4, 3] + Ds [GSQ4, 3]

D35 [Giss6, 12] = Dg[GS32, 1] + Dg[GS32, 1] + D10[GS32, 2] +
+ Dll[GS32, 2] =+ Du[GSgQ, 2] +
+ Dlg[GS32, 2] + D14[G832, 2]

D33 [Gis36,12] = D2[O24, 1] + D3[O024, 2] + 2D4[O24, 3] + D5[024, 3]

D33 [G1s36,12] = D3[Ohys, 1] + D5[Ohyg, 2] 4+ 2D7[Ohyg, 3] + Dy[Ohyg, 3]

D33 [G1s36,12] = D5[Gis, 1] +Dg[Gie, 1] +D7[G1e, 1] +Ds[Gie, 1] +
+Dg[G16, 1] +D10[G16, 1] +D11[Gie, 1] +D12[G1s, 1] +
+D13[Gis, 1] +D14[G16, 1] +D15[G1e, 1] +D16[G1s, 1]

D33 [G1s36, 12] = D5[Gus, 3] +Ds[Gas, 3] +D7[Gug, 3] +Ds[Gus, 3]

D33 [G1s36,12] = Dg[Gea, 1] +Dg[Gea, 1] +D14[Ges, 1] +D16[Ges, 1] +
+D15[Gea, 1] +D29[Gea, 1] +D21[Gea, 1] +Dag[Gea, 1] +
+D50[Gea, 1] +Ds52[Gea, 1] +Ds3[Gea, 1] +De1[Gea, 1]

D33 [G1s36, 12] = Dg[Gog, 3] +D11[Gos, 3] +D13[Gos, 3] +D15[Gos, 3]

D33 [Gis36, 12] = D34[Gi2s, 2] +D36[Gi2s, 2] +D3s[Gios, 2] +Dyo[Gios, 2] +
+D41[Ga2s, 2] +Dag[Giszs, 2]

D33 [Gis36,12] = D19[Gig2, 3] +D14[G1g2, 3] +D19[G192, 6]

D33 [Gis36,12] = Ds7[Gase, 4] +Dss[Gase, 4] +Dso[Gase, 4]

D33 [G1s36, 12] = D31[Gres, 12]
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D33 (G536, 12] =
D33 [G1s36,12] =
D33 [G1s36,12] =
D33 [G1s36,12] =
D33 (G536, 12] =
D33 (G536, 12] =

D33 (G536, 12]
D33 (G536, 12]
D3y (G536, 12]

D34 [G1536,12]
D34 [G1536,12]

D3y (G536, 12]
D34 [Gi536,12]

D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =
D3y [Gis36,12] =

D34 [G1536,12]

D34 [G1536,12]
D35 [G1s36, 12]

D35 [Gis36, 12]
D35 [Gis36, 12]

D35 [G1s36, 12]
D35 [Gis36, 12]

D35 [G1s36, 12]

5{GFus, 3] +Dg[GF s, 3] + D7[GF4s, 3] + Dg[GF s, 3]
10[GF192, 3] +D14[GF 192, 3] +D19[GF 192, 6]
7[GF 96, 3] +Dg[GF g6, 3] +D10[GFos, 6]
[GP24, 1] + Do [GP24, 1] + D3 [GP24, 1] + 3D7[GP24, 3]
[GSQ4, 1] + D3 [GSQ4, 2] +Dy [GSQ4, 3] +2Ds [GSQ4, 3]
[GSs2,1] +D7[GS32, 1] +D10[GSs2, 2] +D11[GS32, 2] +
+D12[GS32, 2] + D13[GSs2, 2] +D14[GS32, 2]

D
D
D
D,
D,
D5

= D1[O24, 1] +D3[O024, 2] +D4[O24, 3] + 2D5[O024, 3]
= D1[Ohug, 1] + D5[Ohysg, 2] + D7[Ohyg, 3] + 2D9[Ohys, 3]
= D5[Gie, 1] +Dg[G16, 1] +D7[G1g, 1] +Dg[Gs, 1] +

+Dy[Gig, 1] +D10[G16, 1] +D11[G16, 1] +D12[G1g, 1] +
+D13[Gas, 1] +D14[G16, 1] +D15[G1e, 1] +D16[G1s, 1]

= Dy [G48, 3] +Dg [G48, 3] +D7[G48, 3] +Dg [G48, 3]
= D13[Geya, 1] +Dog[Gea, 1] +D2g[Gea, 1] +D31[Gea, 1] +

+ D33[Gea, 1] +Dao[Gea, 1] +Das[Gea, 1] +Dag[Gea, 1

1+
+ D55(Gea, 1] + Dss[Gea, 1] +Deo[Gea, 1] + De3[Gea, 1]

= Dg[Gog, 3] +D11[Goe, 3] +D13[Gos, 3] +D15[Gos, 3]
= Dy3[Gias, 2] +Dus[Gios, 2] +Dag[Gios, 2] +Ds1[Gios, 2] +

+D54[G12s, 2] +Ds6[Gios, 2]

D10[G1o2, 3] +D14[G1g2, 3] +D19[G192, 6]

Di1[Gase, 4] +De3[Gase, 4] +Dea[Gase, 4]

D33[Gres, 12]

[GF48, 3] + Dg [GF48, 3] +D7[GF48, 3] + Dg [GF48, 3]
(GF192, 3] +D13[GF 192, 3] +D19[GF 192, 6]

[GFQG, 3] +Dg [GFQG, 3] +D10[GF96, 6]

[GP247 1] + Do [GP247 1] + D3 [GP247 1] + 3D7[GP247 3]
D [GrSQ47 1] + D3 [GSQ4, 2] + 2Dy [GSQ4, 3] +Ds [GSQ4, 3]
Ds5[GS32, 1] + D7[GS32, 1] + D10[GS32, 2] + D11[GS32, 2] +
+ D12[GS32, 2] +D13[GS32, 2] + D14[GS32, 2]

Ds
Dy
Dg
Dy
2

= D1[O24, 1] +D3[O024, 2] +D4[O24, 3] + 2D5[O024, 3]
=D [Oh48, 1] +Ds [Oh48, 2] +D7[Oh48, 3] + 2Dg [Oh48, 3]
= D5[Gie, 1] +Dg[G16, 1] +D7[G1g, 1] +Dg[Ge, 1] +

+Dy[Gag, 1] +D10[G16, 1] + D11[G1g, 1] +D12[G1g, 1] +
+D13[Gis, 1] +D14[Gi6, 1] +D15[G1s, 1] +D16[G1s, 1]

= Ds [G48, 3] +Dg [G48, 3] +D7[G48, 3] +Dg [G48, 3]
= D13[Geya, 1] +Dog[Gea, 1] +D2g[Gea, 1] +D31[Gea, 1] +

+ D35[Gea, 1] +Dao[Gea, 1] + Dag[Gea, 1] + Dag[Gea, 1

|+
+ D55(Gea, 1] + Dss[Gea, 1] +Deo[Gea, 1] + De3[Gea, 1]

= Dg[Gog, 3] +D11[Goe, 3] +D13[Gos, 3] +D15[Goes, 3]
= Dy3[Gi2s, 2] +Das[Gi2s, 2] +Das[Gi2s, 2] +Ds1[Gizs, 2] +

+Ds54[G12s, 2] +Ds6[G12s, 2]

= Dy[Gg2, 3] +D13[G192, 3] +D19[G192, 6]
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D35 [Gis3e, 12] = De1[Gase, 4] +De3[Gase, 4] +Dea[Gase, 4]

D35 [Gis36, 12] = D32[Gres, 12]

D35 [G1s36,12] = D5[GF4s, 3] +Dg[GF4s, 3] +D7[GF4s, 3] +Dg[GF4s, 3]

D35 [Gis3e, 12] = D19[GF 192, 3] +D14[GF 192, 3] + D19[GF 192, 6]

D35 [G1535, 12] = 1)7[6}1:‘967 3] + Dy [GF96, 3] +D10[GF95, 6]

D35 [G1536, 12] = Dl[GP24, 1] +D2[GP24, 1] +D3[GP24, 1] + 3D7[GP247 3]

D35 [G1535, 12] =Dy [GrSQ47 1] + D3 [GSQ4, 2] +Dy [GSQ4, 3] +2Ds [GSQ4, 3]

D35 [Gis36, 12] = Dg[GS32, 1] +Dg[GSa2, 1] +D10[GS3s2, 2] +D11[GS32,2] +
+D12[GS32, 2] +D13[GS32, 2] +D14[GS32, 2]

D35 [Gis3e, 12] = D2[Og4,1] +D3[O24, 2] + 2D4[O24, 3] +D5[O024, 3]

D35 [G1536, 12] = D3 [Oh48, 1] —|—D5 [Oh487 2] + 2D7[Oh4g, 3] —|—Dg [Oh487 3]

D36 (G536, 12] = 2Dg[G16, 1] + 2D7[Gue, 1] + 2D9[G1g, 1] 4+ 2D11[Gae, 1] +
+ 2D15[G1e, 1] + 2D16[G6, 1]

D36 [G1s36,12] = 2D6[Gys, 3] + 2D7[Gys, 3]

D3¢ [G1s36,12] = D7[Ges, 1] +D10[Ges, 1] +D12[Gea, 1] +D15[Ges, 1] +
+D19[Gea, 1] +D25[Gea, 1] +D34[Geus, 1] +D36[Gea, 1] +
+D37(Gea, 1] + Das5[Gea, 1] +Ds1[Gea, 1] +Ds57[Gea, 1]

D36 [G1s36,12] = 2D12[Gos, 3] + 2D14[Gos, 3]

D36 [Gis36,12] = D11[Gi2g, 1] +D15[G1og, 1] +D19[Giog, 1] + D23 [Gios, 1] +
+D35[Gi2s, 2] +D39[Gias, 2] +Dus[Gi2s, 2] +Ds3[Gias, 2]

D36 [Gis36, 12] = D11[Gi92, 3] +D12[G192, 3] +D15[G192, 3] +D16[G192, 3]

D36 (G536, 12] = D35[Gase, 2] + D37[Gase, 2] + Daa[Gase, 2] + Dar[Gase, 2] +

+Da49[Gase, 2] +Dsa[Gase, 2]

D36 [G1s36, 12] = Da5[Gres, 6] +Do7[Gres, 6]

D35 [G1536, 12] = 2D5 [GF48, 3] =+ 2D8 [GF48, 3]

D36 [G1536, 12] = 2D29[GF 192, 6]

D36 [G1536, 12] = 2D19[GF g6, 6]

D3g [G1536, 12] =2Dy [GP24, 1] +2Ds [GP24, 1] +2Dg [GP24, ].] +2Dg [GP24, 3]

D36 [G1s36, 12] = 2D4[GS24, 3] + 2D5[GS24, 3]

D36 [Gisse, 12] = D5[GSs2, 1]4+Ds[GS32, 1]4+D7[GS32, 1]+Dg[GS32, 1]4+2D12[GS32, 2]+

2D14[GS32. 2]

D36 [Gis36,12] = D1[O24, 1] +D2[O24, 1] 4+ 2D3[O24, 2] +D4[O24, 3] +
+D5[O24a 3]

D3g [G1536, 12] = D,y [Oh48, 1] +D4[Oh48, 1] + 2Dg [Oh48, 2] + Dg [Oh48, 3] +
+D10[Ohus, 3]

D37 [Giss6, 12] = 2D5[Gg, 1] + 2D3[Gig, 1] + 2D19[G16, 1] + 2D12[G16, 1] +
+ 2D13[G16, 1] + 2D14[G16, 1]

D37 [Gis36, 12] = 2D5[Gus, 3] + 2D3[Guys, 3]

D37 [Gis3e, 12] = D7[Gea, 1] +D10[Gea, 1] +D12[Gea, 1] +D15[Gea, 1] +
+D19[Gea, 1] +D25[Gea, 1] +D34[Ges, 1] +D36[Ges, 1] +
+D37[Gea, 1] +Dys5[Gea, 1] +Ds1[Gea, 1] +Ds7[Gea, 1]
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D37 [Gis36,12] = 2D19[Gog, 3] + 2D15[Gos, 3]
Ds7[Gisse, 12] = D12[Guss, 1] +D16[Guas, 1] +D20[Guas, 1] + D24 [Gaas, 1] +
+ D35[Gu2s, 2] + D39[Gias, 2] +Das[Gi2s, 2] + Ds3[Gizs, 2]

E. OTHER RELEVANT SUBGROUPS

In this appendix, we list the additional chains of subgroups of the Universal
Classifying Group Gis3¢ that emerge in the analysis of the classical model of
ABC-flows. As in the previous cases, we just give for each of them the conjugacy
classes of which they are composed. The interesting network of interrelation
between these subgroups, which explains the various cases and subcases of ABC-

flows is thoroughly discussed in the main text.
E.1. The Group Gf;SB 0),

Conjugacy Class Cy (G(égB O))
{1, 0 0 0} (E.1)

Conjugacy Class Co §‘3§B’0)

{1, 0 1 0} (E.2)

Conjugacy Class Cy (Gi5g>?

{1, 1 0 1} (E.3)

, A,B,0
Conjugacy Class Cy (Gip3™"

{1, 1 1 1} (E.4)

Conjugacy Class Cs G(ééB’O)

B3 0 0 1) (E.5)

(6i)
(6i)
(cin)
(ci)
Conjugaey Class Cs (G459
(ci)
(ci)
C

(3, 0 1 1} (E.6)

Conjugacy Class C7 G(ééB’O)

(B2 1 0 0) (E.7)

Conjugacy Class Cs (Gi53"

B 11 0) (E.8)

Conjugacy Class Cy (Gi5g>?

0 0 1}

E.9
{11 1 0 0} "
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1}
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Conjugacy Class Cig (GggéB’o))
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{31
{33
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{31
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{33
{33

Conjugacy Class Coq (GggéB’o))

{31
{31
{33
{33

Conjugacy Class Cao (GggéB’o))

{31
{31
{33
{33

Conjugacy Class Ca3 (GggéB’o))

{31
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{33

o O = = = = O O o O o O — = O O

S T G

_ o = O I Mol Nl N I Nl Nl N = =)

= O = O

1}
1}
1}
1}

0}
0}
1}
1}

1}
1}
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1}
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0}
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Conjugacy Class Cay (GggéB’o))
{31
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{33

Conjugacy Class Cas (GggéB,o))
{31
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{33
{33

Conjugacy Class Cag (GggéB,O))
{32
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{32
{32

Conjugacy Class Car (Gg‘géBvO)){
92

{52
{53
{53
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2
{52
{53

{53
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2
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