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HIGHER-ORDER CORRECTIONS TO THE
GRIMUS-STOCKINGER FORMULA

S. E. Korenblit', D. V. Taychenachev
Irkutsk State University, Irkutsk, Russia

For the Grimus—Stockinger formula one and the same dimensionless parameter of asymptotic ex-

pansion is found by several ways of calculations. This parameter strongly depends on the width of wave
packet.
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MIMPUHBI BOJTHOBOTO 1T K€T .
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INTRODUCTION

For the modern theory of neutrino oscillations [1,2] the main tool is the Grimus—Stockinger
theorem [3], which gives the leading asymptotic behaviour with |R| = R — oo for the integral

/ d3q efi(q-R)(I)(q) _ ginR
(27)3 (@2 — k2 —i0) ~ 47R

J(R) = @ (—rm) [14+O(R™1/2)], (1)
where R = Rn, n? = 1, and the function ®(q) € C? decreases at least like 1/q* together
with its first and second derivatives. In order to understand the physical conditions necessary
for this expansion, the dimensionless parameters should be determined from the higher-order
corrections to this formula. Here, this parameter is defined unambiguously by the use of
various asymptotic expansions allowing one to calculate the further corrections.

1. CORRECTIONS FOR THE THREE-DIMENSIONAL CASE

To obtain the higher corrections of order R~" we suppose that ®(q) and its first and
second derivatives are represented by Fourier-transform as

B(q) = / Px i@ o(x), V,d(q) = i / x0T xp(x), @)
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and so on. Since 1/q? is also Fourier-image of 1/|x|, Egs. (2) are valid at least in the sense of
distributions also for the functions defined in [3]. By using the first equality of the following
well-known representations for spherical wave as a free Schrodinger three-dimensional Green
function with k = 2\, q = 2p:

ir|x| d3 Fi(a-x) 43 . 7 ) )
€ :/( q € : ) — i/_pe$21(p~x)/dte’Lt()\2+’LO—p2), (3)
0

4 |x| 27)3 (q? — k2 —i0 473
and by interchanging the order of integration for integral (1) one finds

m\R x|
/d’&mm < 700 @)

Substituting here the expansion, which in the exponential should always contain one additional
order with respect to the ones in denominator

1/2
IR—XI—R[1—2(H'X)+X—2] :R—(n-x)+M+

R R? 2R o

we come to the corresponding expansion of integral (4) up to O(R~2):

4:1};/613 R >[1+( éx)+%( ’ (H-X)2)+...],

that by making use of (2) transcribes as

ikR

JR) = [1 - }%(n-vq) 2’2 (n-V,)?—v2) +] @
with
(n- Vq)qJ(q)‘qum = —0,P(—kn), (6)

and so on. For any positive definite quadratic form of momentum q: ¢ = (qA~tq) > 0, with
®(q) = H(¢), a(n) = (nA~'n), a?(n) = (nA"’n), that is

[1—i(n.vq)

: (09,7 - v3) | v(a)

2R

— [1 + %” [3a(n) — Tr {A"1}]0, — % (ﬁ(n) - aQ(n))f‘?Qz}H(C)‘ - (D

=k?a(n)
Then, for Gaussian wave packet: H(¢) = e~¢/4, expression (5) reads
pinR—r"a(n)/4 iK W3
- @@ _ - o 2 _ =2
g = S [ 2 o) - A ) - B (@ - w)]

Here, the square bracket evidently represents corrections only to the phase of the exponential.
It may be directly obtained by the saddle-point method.
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To this end let us transcribe integral (1) for the above Gaussian wave packet by using the
second representation of Eq. (3). Gaussian integration gives

i 7T 1
JR) = 1 /dt [7} PO K= (A +itl), Ko=A, 9)
0
where
iF(t) = it(\ +i0) — (RK,R), iF"(t)=2 (R{Kt}3 R) : (10)
iF(t) =i [/\2 +i0 + (R{Kt}2 R)} 0, ty=R/\+ia(n)+e (11)

to is the saddle point as asymptotical solution of Eq.(11) for R — oo up to € = O(A/R).
It is obtained by diagonalization A = OT AO onto the eigenvalues A = diag {a;}, with
0 < aj = 1/a; < oo and determinant |A| = det{A} = ajasag, by using a suitable orthogonal
rotation ¢ = OR, @* = R?, and due to Eq. (11) defines F(¢y) and |Ky,| up to O(e?). Along
the path deformed according to @(n) > 0 we obtain

i [KG 12T 2 1Y%, QOR) .,
j(R) ~ Z e’LTr/4 |:| 7T;u|:| |:|iF”(t0)|:| ezF(to) — 7 e—/\ oz(n)7 (12)
O(R) =2\R — i [36(n) —Tr {Afl}} — )\—3 {?(n) — EQ(n) (13)
2R R ’
that for

3 3

k=2\ Te{A'} =) a;, > o [a"(n)— ()" =0, (14)
j=1 j=1

exactly coincides with Eq. (8) with the same precision. The corrections in (8), (13) evidently
disappear for degenerate case: a; = oy, for j = 2, 3.

For the neutrino oscillations problem: x = y/E2 — m? = E,;, and for the Gaussian wave
packet with coordinate width o,: A ~ 0,2, so Tr{A~!} ~ @(n) ~ o2, whence, the true
expansion parameters appear as combinations of two different dimensionless ones: ko, and
o,/ R, that define the application conditions of the Grimus—Stockinger formula as

Oz

7z Oz 39z 3%z
(koz) 7 (Eros) 7 <1, and (koy) 7 (Eros) 7 < 1. (15)

2. THE FOUR-DIMENSIONAL CASE

In fact, the above integral (1) is only the three-dimensional part of the four-dimensional
one defining macroscopic Feynman diagram [2] of the problem:

_ [ dlq e o) m?
7 */ (2m)2 (g2 — m? + i0) */ dir==h(i0—m*(R+1)°) 6(r),  (16)

with

R" = (T,R) — 0o, VR? = \/R'R, = TQ—RQgTEﬁgT, (17)
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where ) . (e2) )
m d*q e N4 m° |m e ™
P miat) = [t s T [ as)
i (2m)2 (g2 — m2 +i0) i\ 2 (ma)3/
for a? = i0 — 2% = ™22, is the causal propagator in coordinate space, and now the four-

dimensional Fourier representation is assumed for ®(gq), which for relativistic Gaussian wave
packet [2] reads as

1/2

®(q) :/d‘*re—i(qr)qb(r), B(q) s e~ @ATD/A () s %e—wﬂ"). (19)
Here, again A~! ~ 02 in terms of Gaussian coordinate width for any positively defined
quadratic form of momentum ¢ in Minkowski space: (= (¢A~'q) > 0. Then, for 02 — 0
one has A — oo, ®(q) — 1, ¢(r) — &4(r), whence iJ(R) — m?h (i0 — m*R?), that is
reasonable from physical viewpoint.

Repeating now all the previous steps (4)—(8) for the second expression (16) of J(R), with
the so approximated propagator (18), for arbitrary ®(¢) (19) and n* = R*/VR2, | = ill],

]| = V' R2, with 1o
. 2 2 2
ma:ml[l—l—zz(lnr)—%} zm[1+i<nr)+WTr+...], (20)
one obtains
m2 [r e ™ 3(ndy) m 9 9
s e [ {1 M S~ fow|

that for the relativistic Gaussian wave packet from (19), with @(n) = (nA~'5), a2(n) =
(77A727)), analogously gives

m2 T efml efm2a('r])/4

P V2 (mi)de

x {1 ~ 2 [4atn) - T {A™]

J(R) =~

m3

= |02 — @)’ } @

Such, at first sight, rough calculations are exactly confirmed again by saddle-point method.
Indeed, by exponentiating like (3) the denominator of the first expression (16) with m = 2m
and representation-dependent g — g,,,, or 6*,, by means of Gaussian integration clarified in
Appendix, one has instead of (9)—(11):

o0

IR = 7 [aKOM exp (-0}, KO = [A—itg] @)

0
—iF(t) = —it (m® —i0) — (RK(t)R), —iF"(t) =2 (RK*(t)R), (24)
—iF'(t) = —i [m® —i0 + (RK*()R)] — 0, to = |l|/m —ia(n) + , (25)

to is again the saddle point as asymptotical solution of Eq.(25) for [I|] — oo up to € =
O(m/|l]). It is obtained now by diagonalization in Minkowski space as A = £0)(A);,&™
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onto the eigenvalues (K)jn = gjna(j) ordered [4] as 0 < gjja¢;) = gj;/a; < oo, with
determinant |A| = |A,,| = |(A);n|, by using a suitable Lorentz transformation as ¢/ =
¢ R with g; = g;;0" = gjro”, 0® = R?, and due to Eq.(25) defines again F(to) and
|K(to)| up to O(e?). Along the path deformed according to @(n) > 0, instead of (12) one
finds

—ir 1/2 —iB(R) ,—m?*a(n)
~ 1 12 [_e 22w —iF(tg) _ VIO € e !
J(R) ~ i |K(t0)| |:| — if”(to” € i 13/2 ; (26)
3
. _ m — _
—iB(R) = —2ml —  [4a(n) - Tr{A™}] - = [&2() - @), @]
that for
Tr{A"'} = (A A—Z% |Auw| = Hgﬂam >0, (28)
7=0

3
Z g]] 2 - (77A_n77) ) 9uv 9k = diag{lv _17 _17 _1}7 (29)
7=0

exactly coincides with Eq. (22) with the same precision.
The true parameters of expansion appear again as the following products of the two
dimensionless parameters, that are now mo, and o, /|l|:

Iz <1, (30)

=« 1, and (mo,)? i

(moy) ]

and they have the same order for (mo,) < 1.
It is easy to see that both conditions for the three- and four-dimensional cases are practi-
cally the same. Indeed, Eq. (17) implies that

R R? T2
V:E%:T’ whence R2:|l|2fﬁm2—ﬁ m?. (31)
Since for ultrarelativistic neutrino 7' = |R| and E, =~ k = |k|, conditions (30) may be
rewritten as o, O
(K02 e = (Bu) 72 ~ (Bpoa) s < 1, (32)
R| T IR|
and o o
(Mmoy)? (ko) e & (M0g) 2 (Beoy) me < 1. (33)
IR| R|

Thus, for (mo,) < 1 these both conditions are the same as the first one in the three-
dimensional case (15). Moreover, the same dimensionless parameter (32) defines in fact the
asymptotical solutions of both saddle-point equations (11) and (25). Note, that exact values
of the first and second square brackets in (13) and/or (27), respectively, may be different,
and their determination in terms of o, for the four-dimensional case [2] (27)—(29) is different
from that for the three-dimensional case (13), (14).
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APPENDIX

In order to strictly calculate a standard Gaussian integral over the Minowski space [2]:
/d4y o~ (WAY)+2(By) (34)

where the quadratic form (yAy) = y, A""y, is symmetric and positive definite, the following
solution of the eigenvalue problem may be used:

Ag(n) = a(n)é(n)a (g(n))Q =g"", A/w = gfil)(x)lnglgn)? (A)ln = GinQ(n)- (35)

In spite of ambiguity ([5, §94]) of diagonalization procedure for symmetric tensor in Min-
kowski space, the positive definiteness of A leaves the used type of its diagonalization

only, leading to eigenvectors £(™), n = 0—3 (35), whose components fl(,n) define Lorentz
transformation diagonalizing the form. Then, with the substitutions Y = f,(,n)y” transforming
(yAy) = (YAY), b = B“gfim), (By) = (bY) = b™gmn Y™, integration (34) factorizes to

3 (o)
/d4Ye_(YKY)+2(bY) = H / dy”e—(Y")zgma(n)+2b"gm,y”
n=0 (_"

4 o 4
- KKWTn'eXp (v (&) lb):,/mﬂ—wexp(BA—lB), (36)

where A, (A=1)""=5,*, and || = |(A);,] is defined by (28).

Nevertheless, it is instructive to obtain the same result without reference to diagonalization
by using the direct integration over space and time variables separately. Since for the
n-dimensional Minkowski space with signature metric g,,, = diag {1, —1,—1,...,—1} in any
given orthogonal basis the symmetric tensor A is represented by the block matrix A, = A;;
for , j, u, v = 0=+n—1, with the rightmost bottom block A;; = AY = Aj;;, fori,j = 1+n—1:

(Ao Ao
Ay = (Aio Ay ) : 37

integral (34) with d*y — d"y may be rewritten as

oo

/dy e*yUA00y0+2(BoyU)/dn—1yexp [~y Auy* — 2 (4° Aok — Bi) v*] .

— 00

The both integrals are over Euclidian space now, so they are evaluated to

n _ 1 — : 2
F ey B s L s ad o

if = Ago — Ay (A_l)lkAko > 0. The expression is simplified by Laplace expansion of

, where M (“ ‘2 :::) means the minor of the matrix A,,, whose rows

the determinant |4, s
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11,13, ... and columns j1, jo, ... are deleted:
n—1 n—1
A = 3 (1) A M () = AgoM (5) = D (1)1 Ao M (7) =
k=0 k=1
n—1 n—1
= AooM (§) = D (1) Ao > Aig(—1)TM (§ 1) =
k=1 i=1

= |Ayl [Aoo — Aok (A_l)ki Aio} = alA;l. (39)

Thus, o > 0 due to positivity condition of form (37) implying that |A,,, |, |A;;| > 0. Further-
more, if for any symmetric block matrix A:

_ Py ap Hi1 b Ii; Op2
AA'=AB= = =1,
( aTQ Ao > < bil—Q B ) <01F2 Zoo )

_ -1 _ _ _ -1 _
By = (A —a,Prlan) = Ay +Ayal, (Pu —andyal)  andy,
whence the rightmost bottom block of the inverse to (37) is expressed for ¢,k,l,7 =1+n—1
as

then

1

(A" = (By)™ = (A )" + P (A" A Ag; (A1), (40)

and since 1)+ (o ) l
_1yi —1)""M (p } o (1)
A 1)k _ 0k , A 1 _ M 0 ’
( ) | -Alj| ( ) | Auul (l)
the argument of the exponential in (38) is also reduced to expression (36):

By~ 2 BBy (A7) A B [ (AT 4 L (A Ao (A7) By =

=B, (A" B, =(BAT'B).

A generalization of integral (34) with arbitrary polynomial or smooth function similar to the
well-known approximations for Euclidian case [6] here is also straightforward.
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