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An extended quark sigma model which includes higher-order mesonic interactions is studied at the
ˇnite baryonic chemical potential uB and temperature T . The ˇeld equations have been solved in the
mean-ˇeld approximation by using the modiˇed iteration method at ˇnite baryonic chemical potential
uB and temperature T. The Goldstone theorem is satisˇed below a critical temperature in the chiral
limit for uB = 0. As expected from general universality, the chiral phase transition is second-order.
By including the higher-order mesonic interactions, the critical temperature is reduced compared to that
found in recent works and is in good agreement with lattice QCD results. The nucleon mass is examined
in the (uB , T ) plane, showing a strong dependence on uB and T . We ˇnd that an increase in both
the baryonic chemical potential uB and the temperature T leads to an increase in the values of the
nucleon mass. This is evidence for the quarkÄgluon deconˇnement phase transition at higher values of
temperature.

�·¥¤¸É ¢²¥´  · ¸Ï¨·¥´´ Ö ±¢ ·±μ¢ Ö ¸¨£³ -³μ¤¥²Ó, ¢±²ÕÎ ÕÐ Ö ¢§ ¨³μ¤¥°¸É¢¨Ö ³¥§μ´μ¢ ¢Ò¸-
Ï¨Ì ¶μ·Ö¤±μ¢. Œμ¤¥²Ó · ¸¸³ É·¨¢ ¥É¸Ö ¸ ±μ´¥Î´Ò³¨ ¡ ·¨μ´´Ò³ Ì¨³¨Î¥¸±¨³ ¶μÉ¥´Í¨ ²μ³ uB ¨
É¥³¶¥· ÉÊ·μ° T . �μ²¥¢Ò¥ Ê· ¢´¥´¨Ö ·¥Ï ÕÉ¸Ö ¢ ¶·¨¡²¨¦¥´¨¨ ¸·¥¤´¥£μ ¶μ²Ö ¸ ¶μ³μÐÓÕ ³μ¤¨-
Ë¨Í¨·μ¢ ´´μ£μ ³¥Éμ¤  ¨É¥· Í¨° ¤²Ö ±μ´¥Î´ÒÌ ¡ ·¨μ´´μ£μ Ì¨³¨Î¥¸±μ£μ ¶μÉ¥´Í¨ ²  uB ¨ É¥³¶¥-
· ÉÊ·Ò T . ’¥μ·¥³  ƒμ²¤¸ÉμÊ´  ¢Ò¶μ²´Ö¥É¸Ö ´¨¦¥ ±·¨É¨Î¥¸±μ° É¥³¶¥· ÉÊ·Ò ¢ ±¨· ²Ó´μ³ ¶·¥¤¥²¥
¤²Ö uB = 0. ‚ ¸μμÉ¢¥É¸É¢¨¨ ¸ μ¦¨¤ ´¨Ö³¨ μ¡Ð¥° Ê´¨¢¥·¸ ²Ó´μ¸É¨ ±¨· ²Ó´Ò° Ë §μ¢Ò° ¶¥·¥Ìμ¤
¢Ò¶μ²´Ö¥É¸Ö ¢μ ¢Éμ·μ³ ¶μ·Ö¤±¥. �·¨ ÊÎ¥É¥ ³¥§μ´´ÒÌ ¢§ ¨³μ¤¥°¸É¢¨° ¢Ò¸Ï¨Ì ¶μ·Ö¤±μ¢ ¢¥²¨Î¨´ 
±·¨É¨Î¥¸±μ° É¥³¶¥· ÉÊ·Ò ¸´¨¦ ¥É¸Ö ¶μ ¸· ¢´¥´¨Õ ¸ ¢¥²¨Î¨´ ³¨, ¶μ²ÊÎ¥´´Ò³¨ ¢ ´¥¤ ¢´μ μ¶Ê-
¡²¨±μ¢ ´´ÒÌ · ¡μÉ Ì, ¨ ´ Ìμ¤¨É¸Ö ¢ Ìμ·μÏ¥³ ¸μ£² ¸¨¨ ¸ ·¥§Ê²ÓÉ É ³¨ ·¥Ï¥ÉμÎ´μ° Š•„. Œ ¸¸ 
´Ê±²μ´  · ¸¸³ É·¨¢ ¥É¸Ö ¢ ¶²μ¸±μ¸É¨ (uB , T ) ¨ ¤¥³μ´¸É·¨·Ê¥É ¸¨²Ó´ÊÕ § ¢¨¸¨³μ¸ÉÓ μÉ uB ¨ T .
�μ± § ´μ, ÎÉμ μ¤´μ¢·¥³¥´´μ¥ Ê¢¥²¨Î¥´¨¥ ¶μÉ¥´Í¨ ²  ¨ É¥³¶¥· ÉÊ·Ò ¶·¨¢μ¤¨É ± Ê¢¥²¨Î¥´¨Õ ³ ¸¸Ò
´Ê±²μ´ , ÎÉμ Ö¢²Ö¥É¸Ö ¶·μÖ¢²¥´¨¥³ ±¢ ·±-£²Õμ´´μ£μ Ë §μ¢μ£μ ¶¥·¥Ìμ¤  ¤¥±μ´Ë °´³¥´É  ¶·¨ ¢Ò-
¸μ±¨Ì É¥³¶¥· ÉÊ· Ì.

PACS: 11.10.Wx; 11.30.Rd; 12.39 Fe

INTRODUCTION

The behavior of quantum chromodynamics (QCD) at high temperatures and densities
has received much attention over the past years and is an ongoing topic of both theoretical
and experimental research [1]. Understanding the behavior of strongly interacting matter at
ˇnite temperature and/or density is of fundamental interest and has important applications
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in cosmology, the astrophysics of neutron stars, and the physics of relativistic heavy-ion
collisions. In fact, lattice simulations, which work well for zero baryon chemical potential and
ˇnite temperature, have serious difˇculties in dealing with the complex fermion determinant
that arises at ˇnite chemical potential [2]. Different models have been used to study this
problem. One of the effective models for describing the strong-interaction properties is the
linear sigma model, which was suggested by Gell-Mann and Levy [3] to describe nucleons
interacting via sigma (σ) and pion (π) exchanges. The linear sigma model clariˇes how the
structure of the nucleon respects the constraints imposed by chiral symmetry. Spontaneous
and explicit chiral symmetry breaking require the existence of the pion mass. Furthermore,
the model and its extension provides a good description of the hadron properties at zero
temperature as explained in [4, 5]. At ˇnite temperature, the model provides a good description
of the phase transition by using the Hartree approximation [6Ä9] within the CornwallÄJackiwÄ
Tomboulis (CJT) formalism [10]. The model has been extended to include the ˇnite chemical
potential and ˇnite temperature using different techniques as in [11Ä13] to study the phase
transition and critical point. At the same time, the phase transition has been studied in
the form of a mixed phase of physical vacuum and baryon matter in the framework of the
NambuÄJona-Lasinio (NJL) model as in [14, 15].

In recent years, higher-order multiquark interactions have played an important role in
studying the phase transition and critical temperature in the chiral quark models. Osipov et
al. [16] studied the effect of eight-quark interactions on the critical temperature by combining
the three-	avor NambuÄJona-Lasinio model and 't Hooft Lagrangians (NJLH). Kashiwa et
al. [17] extended the (NJL) model to eight-quark interactions and studied the effect of these
interactions on the critical temperature point and the phase transition. Hiller et al. [18] studied
the phase diagram for the (NJL) model with 't Hooft and eight-quark interactions. In the
same direction, Abu-Shady studied the effect of eight higher-order mesonic interactions on
nucleon properties at ˇnite temperature [19].

The aim of this work is to study the effect of the eight higher-order mesonic interactions
on the meson masses, the phase transition, the critical point temperature, and the nucleon
mass at ˇnite chemical potential and temperature in the chiral quark sigma model for small
quark mass.

This paper is organized as follows: the linear sigma model with the effective mesonic
potential at ˇnite temperature is presented in Sec. 1. Next, the numerical calculations are
presented in Sec. 2 and the results are discussed in Sec. 3. Finally, the summary and conclusion
are presented in Sec. 4.

1. THE CHIRAL QUARK SIGMA MODEL WITH THE EFFECTIVE POTENTIAL

1.1. The Chiral Quark Sigma Model with the Effective Normal Mesonic Potential. The
interactions of the quarks via σ and π meson can be described at ˇnite temperature T and
baryonic potential uB [20]. The Lagrangian density is

L(r) = iΨ∂μγμΨ +
1
2

(∂μσ∂μσ + ∂μπ · ∂μπ) + gΨ(σ + iγ5τ · π)Ψ − U eff
1 (σ, π, T, uB) ,

(1)
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where

U eff
1 (σ, π, T, uB) = U

(0)
1 (σ, π)−

− 12
∫

d3P

(2π)3

[√
P 2 + M2 + T ln

(
exp

(
uB

T
− 1

T

√
P 2 + M2

)
+ 1

)
+

+ T ln
(

exp
(
−uB

T
− 1

T

√
P 2 + M2

)
+ 1

) ]
, (2)

with

U
(0)
1 (σ, π) =

λ2

4
(
σ2 + π2 − ν2

)2
+ m2

πfπσ. (3)

In Eq. (2), the ˇrst term U
(0)
1 (σ, π) is the contribution from the mesons at tree level. The

divergent second term comes from the negative energy states {E =
√

P 2 + M2} of the Dirac
sea. It can be partly absorbed in the coupling constant λ2 and the constant ν2 by using a
renormalization procedure [20]. In the mean-ˇeld approximation, the meson ˇelds are treated
as time-independent classical ˇelds. This means that we replace the powers and the products
of the meson ˇelds by their corresponding powers and the products of their expectation
values. So the constituent quark mass is deˇned as M2 = g2

(
σ2 + π2

)
. The mesonÄmeson

interactions in Eq. (3) lead to a hidden chiral SU(2) × SU(2) symmetry assuming a vacuum
expectation value of

〈σ〉 = fπ, (4)

where fπ = 93 MeV is the pion decay constant. The ˇnal term in Eq. (3) is included to
break the chiral symmetry explicitly. It leads to a partial conservation of axial-vector isospin
current (PCAC). The parameters λ2 and ν2 can be expressed in terms of fπ and the masses
of mesons as follows:

λ2 =
m2

σ − m2
π

2f2
π

, (5)

ν2 = f2
π − m2

π

λ2
. (6)

1.2. The Effective Mesonic Potential with Higher-Order Mesonic Interactions. In this
subsection, we construct the effective potential with higher-order mesonic interactions in the
linear sigma model. To include higher-order mesonic interactions, we take the meson potential

U
T (0)
2 at zero temperature in the same form as in [21]:

U
T (0)
2 (σ, π) =

λ2
1

4
(
σ2 + π2 − ν2

1

)2
+

λ2
2

4

((
σ2 + π2

)2 − ν2
2

)2

+ m2
πfπσ. (7)

Applying the minimizing conditions and the PCAC, we get

λ2
1 =

m2
σ − m2

π

4f2
π

, ν2
1 = f2

π − m2
π

λ2
1

(8)

and

λ2
2 =

m2
σ − 3m2

π

16f6
π

, ν2
2 = f4

π − m2
π

2λ2
2f

2
π

. (9)
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So we rewrite the effective potential in the higher-order mesonic interactions as follows:

U eff
2 (σ, π, T, uB) = U

(0)
2 (σ, π)−

− 12
∫

d3p

(2π)3

[√
P 2 + M2 + T ln

(
exp

(
uB

T
− 1

T

√
P 2 + M2

)
+ 1

)
+

+ T ln
(

exp
(
−uB

T
− 1

T

√
P 2 + M2

)
+ 1

)]
. (10)

We expand the effective potential in the powers of M2 which ensures that the potential
satisˇes the chiral symmetry when mπ → 0 [20]. We obtain

U eff
2 (σ, π, T, uB) = U

T (0)
2 (σ, π) − 6

π2

(
7π4

180
T 4 +

π2

6
T 2u2

B +
1
12

u4
B

)
+

+ 6g2

(
T 2

12
+

u2
B

4π2

) (
σ2 + π2

)
. (11)

This technique is successfully used to predict the phase transition and critical temperature as
in [22]. Hence, this technique is suitable for studying the conˇnement and deconˇnement
phases in the (T, μB) plane. The ˇnite temperature vacuum can be deˇned by minimizing
the effective potential as

∂U eff
2 (σ, π, T, uB)

∂σ

∣∣∣∣
σ=σ0,π=0

= 0. (12)

Equation (12) represents the condition necessary to satisfy the spontaneous breaking of chiral
symmetry, thereby satisfying the Goldstone theorem, where σ0(T, uB) = fπ(1 + δ(T, uB)).
Using Eqs. (11) and (12), we obtain

λ2
1

(
σ2

0 − ν2
1

)
σ0 + 2λ2

2

(
σ4

0 − ν2
2

)
σ3

0 + m2
πfπ + 12g2

(
T 2

12
+

u2
B

4π2

)
σ0 = 0. (13)

In the chiral limit (mπ = 0), Eq. (13) takes the form

[
m2

σ

4f2
π

(
σ2

0 − f2
π

)
+

m2
σ

8f6
π

(
σ4

0 − f4
π

)
σ2

0 + 12g2

(
T 2

12
+

u2
B

4π2

)]
σ0 = 0. (14)

The square of the sigma mass is obtained as the second derivative of the effective potential
as in [23, 24]:

M2
σ =

∂2U eff
2 (σ, π, T, uB)

∂σ2

∣∣∣∣
σ=σ0,π=0

,

(15)

M2
σ = λ2

1

(
3σ2

0 − ν2
1

)
+ 2λ2

2(7σ6
0 − 3ν2

2σ2
0) + 12g2

(
T 2

12
+

u2
B

4π2

)
.
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Similarly,

M2
π =

∂2U eff
2 (σ, π, T, uB)

∂π2

∣∣∣∣
σ=σ0,π=0

, (16)

M2
π = λ2

1

(
σ2

0 − ν2
1

)
+ 2λ2

2

(
σ4

0 − ν2
2

)
σ2

0 + 12g2

(
T 2

12
+

u2
B

4π2

)
. (17)

Substituting Eq. (14) into Eqs. (15) and (17) at the chiral limit, we obtain

M2
σ(T, uB) =

m2
σσ2

0

2f2
π

[
1 +

1
2f4

π

(3σ4
0 − f4

π)
]

(18)

and

M2
π(T, uB) = 0. (19)

From Eq. (14), we obtain two cases:

1. σ0(T, uB) �= 0. In this case, the phase of spontaneously broken chiral symmetry leads
to Mπ = 0 and Mσ �= 0 as in Eqs. (18) and (19). Goldstone's theorem is satisˇed when the
expansion of temperature is taken up to the critical temperature as in [23]. This is depicted
in Fig. 1.

2. σ0(T, uB) = 0. Here the phase of restored chiral symmetry is satisˇed. From Eqs. (15)

and (17), we obtain M2
π = M2

σ = −λ2
1ν

2
1 + 12g2

(
T 2

12
+

u2
B

4π2

)
as in [9]. By substituting

σ0(T, uB) = fπ(1 + δ(T, uB)) into Eq. (13), we obtain

δ(T, uB) =
λ2

1f
2
π − λ2

1ν
2
1 + 2λ2

2f
6
π − 2ν2

2λ2
2f

2
π + m2

π + 12g2

(
T 2

12
+

u2
B

4π2

)
−2λ2

1f
2
π − 12λ2

2f
6
π + 4ν2

2λ2
2f

2
π + m2

π

, (20)

where the quantity σ0(T, uB) = fπ(1 + δ(T, uB)) will be referred to as the chiral phase
transition as in equivalent the chiral condensate [25].

2. NUMERICAL CALCULATIONS AND DISCUSSION

2.1. The Meson Fields in the Effective Potential. In this subsection, we construct the
equations of motion which result from the Lagrangian density in the mean-ˇeld approximation
using the so-called ®hedgehog ansatz¯. We assume that the pion ˇeld is radially oriented
in space, π(r) = π(r)r̂. Due to the hedgehog solution for the pion ˇeld, a spatial rotation
is equivalent to a rotation of the pion ˇeld in isospin space. Thus, rotating ˇrst in isospin
space and then by the same angle in r-space leaves the hedgehog ˇeld invariant. Therefore,
the ˇelds σ(r) and π(r) are eigenstates of the so-called grand spin G = I + J, where I is
the isospin and J is the angular momentum [26]. The Lagrangian density with the effective
mesonic potential is then given by
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L(r) = iΨ∂μγμΨ+
1
2

(∂μσ∂μσ + ∂μπ · ∂μπ)+ gΨ(σ + iγ5τ · π)Ψ−U eff
2 (σ, π, T ) , (21)

where the sigma ˇeld is expanded around σ0(T, uB):

σ(r) = σ′(r) − σ0(T, uB), (22)

where
σ0(T, uB) = fπ(1 + δ(T, uB)). (23)

Substituting Eq. (22) into Eq. (21), we obtain

L(r) = iΨ∂μγμΨ +
1
2

(∂μσ′∂μσ′ + ∂μπ · ∂μπ)−

− gΨfπΨ + gΨσ′Ψ + igΨγ5τ · πΨ − U eff
2 (σ′, π, T, uB) , (24)

where the time-independent ˇelds σ′(r) and π(r) satisfy the EulerÄLagrange equations, and
the quark wave function satisˇes the Dirac eigenvalue equation. Substituting Eq. (24) into the
EulerÄLagrange equation, we get

�σ′(r) = gΨΨ − λ2
1(σ

′ − σ0)((σ′ − σ0)2 + π2 − ν2
1 )−

− 2λ2
2(σ

′ − σ0)((σ′ − σ0)2 + π2)(((σ′ − σ0)2 + π2)2 − ν2
2 )−

− 12g2

(
T 2

12
+

u2
B

4π2

)
(σ′ − σ0) − m2

πfπ (25)

and

�π(r) = igΨγ5τΨ − λ2
1((σ

′ − σ0)2 + π2 − ν2
1 ))π−

− 2λ2
2π((σ′ − σ0)2 + π2)(((σ′ − σ0)2 + π2)2 − ν2

2 ) − 12g2

(
T 2

12
+

u2
B

4π2

)
π, (26)

where τ refers to Pauli isospin matrices, γ5 =
(

0 1
1 0

)
. We used the hedgehog ansatz [4]

where
π(r) = π(r)r̂. (27)

The Dirac equations for the quarks are given in [27]:

du

dr
= −p(r)u + (W − mq + S(r)) w (28)

and
dw

dr
= − (W − mq + S(r)) u +

(
2
r
− p (r)

)
w, (29)

where S(r) = g 〈σ′〉, p(r) = 〈π · r̂〉, and W are the scalar potential, the pseudoscalar
potential, and the eigenvalue of the quark's spinor Ψ, respectively. Including the color
degrees of freedom, one has to replace gΨΨ by NcgΨΨ, where Nc = 3 colors, g is the
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coupling constant, and mq is the quark mass. The Dirac wave functions Ψ(r) and Ψ(r) are
given by

Ψ(r) =
1√
4π

[
u(r)

iw(r)

]
and Ψ(r) =

1√
4π

[u(r) iw(r)] . (30)

The sigma, pion, and vector densities are given by

ρs = NcgΨΨ =
3g

4π
(u2 − w2), (31)

ρp = iNcgΨγ5τΨ = − 6g

4π
uw, (32)

ρv =
3g

4π
(u2 + w2). (33)

The boundary conditions for the asymptotes of σ(r) and π(r) as r → 0 are

σ(r) ∼ σ0 and π(r) ∼ 0. (34)

We solve the Dirac equations (28) and (29) using the fourth-order RungÄKutta method. Due
to the implicit nonlinearity of Eqs. (25) and (26), it is necessary to iterate the solution until
self-consistency is achieved [19].

2.2. The Nucleon Mass. The hedgehog baryon state is made up of three quarks in identical
spinor states and hence in identical color singlet states. The hedgehog baryon state |B〉 is a
linear combination of N (I = J = 1/2) and Δ(I = J = 3/2) states [4]:

|B〉 =
∑
JM

(−)J+M 1√
2(2J + 1)1/2

|J = I, K = −I3〉 , (35)

where we deˇne the baryon energy as

E |B〉 = MH |B〉 , (36)

where MH is the arithmetic mean of MN and MΔ with an experimental value of 1086 MeV
at low energy. The energy density ε is given by

ε =
∂L

∂ (∂0Φi)
∂0Φi − L, (37)

where

ε = −Ψ(i∇ · γ + mq)Ψ +
1
2

(∇σ′)2 +
1
2

(∇ · π)2 −

− gΨ(iγ5τ · π + σ′)Ψ + U eff
2 (σ′, π, T, uB) − U eff

2 (σ′ = 0, π = 0), (38)

which includes terms for the quark, σ′ and π kinetic energy, the quarkÄmeson interaction,
and the mesonÄmeson interaction. The kinetic energy terms can be re-expressed via the Dirac
eigenvalue equation of motion:

(γμPμ + g(σ + iγ5τ · r̂π(r)))Ψ = 0. (39)
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Hence we obtain the kinetic energy of the quark as

(KE)quark = −(mq − S(r)) ρs(r) + Eρv(r) + p(r) ρp(r). (40)

The kinetic energy of the sigma ˇeld is

(KE)sigma =
1
2
σ′

[
gΨΨ − ∂U eff

2

∂σ′

]
. (41)

Similarly for the pion ˇeld, we have

(KE)pion =
1
2
π

[
gΨiγ5Ψ − ∂U eff

2

∂π

]
. (42)

The meson static energy is given by

Estat = U eff
2 (σ′, π, T, uB) − U

T (2)
eff (σ′ = 0, π = 0, T = 0, uB = 0). (43)

The sigmaÄquark interaction energy is

(mq − gσ′) ρs. (44)

The sigmaÄpion interaction energy is

−gπρp. (45)

Now we can write the formula for the energy calculation of the hedgehog mass:

MH =
∫

d3rε(r) = NcW + 4π

∞∫
0

r2 dr ε(r). (46)

Therefore, we can derive the mass of the nucleon mass MN as in [28]:

MN = MH − 3
4
l, (47)

where l is the moment of inertia, which can be expressed only in terms of the radial functions
of the pion and component quark ˇelds [28].

3. DISCUSSION OF THE RESULTS

We study the phase transition, the meson masses, and the nucleon mass in the quark sigma
model, in which the higher-order mesonic interactions up to the eighth-order interactions are
included. We study the case with two massless quark 	avors (i.e., Nf = 2) and Nc = 3, where
Nc is the number of colors. Concentrating only on the thermal effects and ignoring quantum
corrections, we examine the effect of higher-order mesonic interactions on the meson masses,
and phase transition, and nucleon mass below the critical point temperature. By minimizing
the effective mesonic potential U eff

2 (σ, π), we obtained the gap equations (Eqs. (15) and (17)).
This method is used in previous works such as [23, 24]. We solved the ˇeld equations in
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the mean-ˇeld approximation by using the extended iteration method described in [19]. For
numerical computation, we used the model parameters at zero temperature as the initial
conditions, namely, we took mσ = 500−700 MeV, fπ = 93 MeV, and the coupling constant
g as a free parameter.

3.1. Meson Masses. We start by discussing the effect of the higher-order mesonic inter-
actions on the sigma and pion masses as seen in Figs. 1Ä3 at zero chemical potential. The
calculated sigma and pion masses are shown in the chiral limit (mπ = 0). In Fig. 1, the
effective sigma and pion masses are plotted as functions of temperature in the chiral limit.
The sigma and pion masses satisfy the minimization condition in Eq. (14), which leads to
a pion mass of zero below the critical temperature and a sigma mass which decreases with
increasing temperature, vanishing at Tc = 153.43 MeV. Therefore, the Goldstone theorem is
satisˇed in the (T, μB) plane. We conclude that the minimization condition of the symmetry
of the model is necessary to satisfy the Goldstone theorem below the critical temperature
at zero baryonic chemical potential. This conclusion agrees with the ˇndings of Nemoto
et al. [24], who showed that the Goldstone theorem is satisˇed when the chiral symmetry
is spontaneously broken. Also, Phat and Thu [13] showed that the Goldstone theorem is
satisˇed when the chiral symmetry is spontaneously broken in the (T, μI) plane, where μI is
the isospin chemical potential.

It is important to examine the effect of the coupling constant g and sigma mass mσ on
the behavior of the effective meson mass at the zero chemical potential. In Fig. 2, the meson
mass is plotted as a function of temperature for two values of sigma masses (mσ = 500
and mσ = 600 MeV). The qualitative features of the effective sigma mass are not changed
by increasing the sigma mass. The change only occurs for the critical point temperature.
The change of the value Tc = 130 MeV to Tc = 153 MeV corresponds to mσ = 500 MeV
and mσ = 600 MeV. In Fig. 3, the inverse occurs by increasing the coupling constant g.

Fig. 1. The meson mass plotted as a function of

temperature at zero baryonic chemical potential
(uB = 0) in the chiral limit at mσ = 600 MeV

and g = 2.26

Fig. 2. The meson mass plotted as a function

of temperature for two values of the sigma mass
at zero baryonic chemical potential (uB = 0) in

the chiral limit and for g = 2.26
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Fig. 3. The meson mass plotted as a function of

temperature at zero baryonic chemical potential

(uB = 0) in the chiral limit for two values of
the coupling constant g and mσ = 600 MeV

Fig. 4. The meson mass plotted as a function of

temperature in the chiral limit for uB = 0, uB =

100 MeV at mσ = 600 MeV and g = 2.26

The change of the value Tc = 153 MeV to Tc = 179 MeV corresponds to g = 2.26 and
g = 1.96. We know that an increase in the coupling constant increases the coupling between
the meson and quark ˇelds, which leads to the hadron becoming more bound. Therefore, we
deduce that the qualitative features of the meson mass are not changed in the range parameters
mentioned above. In Fig. 4, the meson mass is plotted as a function of temperature at zero
baryonic chemical potential at a ˇxed uB = 100 MeV. The qualitative features of sigma
mass are not changed by increasing the chemical potential up to uB = 100 MeV. The
value of the sigma mass shifts to lower values in comparison with the behavior of sigma at
zero chemical potential. In comparison with the original quark sigma model, Scanvenius et
al. [20] found that the sigma mass is reduced by increasing uB at the amount of a physical
pion mass.

3.2. The Phase Diagram. It is important to investigate the phase transition in the (T, μB)
plane in the presence of higher-order mesonic interactions. At zero baryonic chemical poten-
tial, lattice QCD predicts that the phase transition is restored at about Tc = 151 MeV [29].
Many attempts have been made to study the phase transition and critical point using the quark
models, such as the quark sigma model, as well as the NJL model and its extensions. In
Fig. 5, we plot the phase transition as a function of temperature at the zero chemical potential
and ˇnite chemical potential (uB = 150 MeV). At zero chemical potential, we note that the
phase is a continuous curve and tends to zero at Tc = 153.43 MeV. This indicates that the
phase transition is a second-order transition. The second-order phase transition is predicted
in [13, 30] at zero baryonic chemical potential using the quark sigma model and the NJL
model. Therefore, the higher-order mesonic interactions are not affected on the qualitative
feature of the phase transition. By increasing the baryonic potential up to uB = 150 MeV, the
phase transition keeps the qualitative feature of being a second-order transition. The effect
only appears when the value of the critical temperature is reduced to Tc = 130 MeV. We
note that Tc = 153.43 MeV at uB = 0. The WuppertalÄBudapest group [29] found that
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the transition temperature for the chiral restoration of u, d quarks equals Tc = 151 MeV.
Hence, the present result of Tc is in good agreement with lattice QCD results. In the original
quark sigma model, the critical temperature is large in comparison with lattice data at a zero
chemical potential. Consequently, the higher-order mesonic interactions play an important

Fig. 5. The phase transition σ0(T, uB) plotted
as a function of the temperature at zero chemical

potential and nonzero chemical potential

role for reducing critical temperature. In com-
parison with the NambuÄJona-Lasinio model
with interactions of 't Hooft Lagrangians
(NJLH) [16], the authors show Tc = 200 MeV
which is large in comparison with the lat-
tice QCD result. By including higher-order
quark interactions in the NJLH model, the
critical temperature assumes a lower value,
which is in agreement with lattice data. There-
fore, our results indicate the same conclu-
sion as indicated by the quark sigma model.
Taniguchi and Yoshida [30] studied the chi-
ral symmetry of QCD at ˇnite temperature
and chemical potential using the SchwingerÄ
Dyson equation in the improved ladder ap-
proximation. They have a second-order phase
transition at the temperature Tc = 169 MeV
along the zero chemical potential. The present
results are therefore in good agreement with
the results of Taniguchi and Yoshida [30]
along the zero chemical potential. Kashiwa

et al. [17] studied the inclusion of the higher-order interaction term σ4 in the NJL
model and found that the phase transition remains unchanged by including σ4. In ad-
dition, they found that the NJL model, when extended to include a higher-order term
of the sigma ˇeld (σ4), leads to a reduction in the critical point temperature from
Tc = 190 MeV to Tc = 180 MeV. Therefore, our conclusion agrees with that of the
NJL model.

At ˇnite baryonic chemical potential, it is more difˇcult to predict the phase transition
using lattice QCD due to the sign problem. Phenomenology models such as the quark sigma
model and NJL model are used to describe the phase transition. The phase transition and
critical point depend on the parameters of the models. In the quark sigma model, there is
a ˇrst-order phase transition at zero temperature and a second-order transition at the zero
chemical potential in the (T, μB) plane [30]. Therefore, the critical point is found from
crossing two lines of the two phases. In Fig. 6, we note that the phase transition is a con-
tinuous curve and tends to zero at uB = 278 MeV at T = 0. The phase transition has
similar behavior up to T = 100 MeV, indicating that the phase transition is a second-order
transition for small ˇnite temperature. Hashimota et al. [31] found that the phase transition
is a second order for zero chemical potential and small ˇnite temperature. Moreover, the
phase transition is still second-order at ˇnite temperature at ˇxed uB = 100 MeV using the
effective potential for the QCD-like theory. Sasaki et al. [32] studied the phase transition and
a critical point using the PolyakovÄNambuÄJona-Lasinio (PNJL) model and found the phase
transition does not change when a Polyakov loop in the (T, uq) plane at a zero isospin chemi-
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Fig. 6. The phase transition σ0(T, uB) plotted

as a function of the chemical potential for zero
temperature and ˇnite temperature T = 100 MeV

at mσ = 600 MeV and g = 2.26

Fig. 7. The phase transition σ0(T, uB) plotted as

a function of temperature for the original sigma
model and the higher-order sigma model at uB =

0 and coupling constant g = 2.26

cal potential is included. However, the location point moves from (uq, T ) = (178, 152) MeV
to (uq, T ) = (187, 130) MeV. Moreover, the critical temperature Tc = 180 MeV is large
in comparison with the lattice data. Kéahéaréa and Tuominen [12] studied the effect of the
Polyakov loop on the phase diagram and critical point in the linear sigma model and the
NJL model and found the critical temperature is in the range of 225−290 MeV at zero
chemical potential. In Fig. 7, the phase transition σ0(T, uB) is plotted as a function of tem-
perature for the original sigma model and the higher-order sigma model. We note that the
two phases tend to zero as the continuous functions of temperature. This behavior is inter-
preted as a second-order phase transition. Moreover, the critical temperature is reduced to
Tc = 153 MeV by including the higher-order mesonic interactions up to eighth-order in the
original sigma model. The obtained value Tc = 153 MeV is in good agreement with lattice
data [29].

3.3. The Nucleon Mass. In this subsection, we investigate the effect of ˇnite temperature
and baryonic potential on the nucleon mass. The nucleon mass is calculated in the mean-
ˇeld approximation by using the extended iteration method as in [19]. The changes in
the sigma ˇeld, pion ˇeld, and the components of the quark ˇeld under the assumptions
of ˇnite temperature and baryonic chemical potential will affect the value of the nucleon
mass. Figure 8 represents the sigma ˇeld and pion ˇeld as functions of radial distance (r)
at zero temperature and chemical potential in comparison with the behavior of the sigma and
pion ˇelds at a ˇnite temperature equal to 100 MeV and zero chemical potential. At zero
temperature and chemical potential (low energy), the sigma ˇeld shows monotonic behavior.
It starts at the value fπ and decreases with increasing radial distance r until reaching the
value of −fπ. The pion ˇeld π(r) has a P-wave form with a maximum at r = 0.57 fm,
decreasing asymptotically, reaching a value of zero as r → ∞. This behavior of the sigma
and pion ˇelds is in agreement [4] in the low energy limits (T = 0, uB = 0).
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Fig. 8. The sigma and pion ˇelds in units of fπ

plotted as functions of distance r for T = 0 and

uB = 0 (solid curves) and for T = 100 MeV and

uB = 0 (dashed curves)

By including the ˇnite temperature up to
T = 100 MeV in the higher-order quark sigma
model, the sigma ˇeld shifts to higher val-
ues and then decreases with increasing radial
distance down to σ = −fπ MeV. The pion
ˇeld is shifted to higher values in compari-
son with the behavior at (T = 0, uB = 0)
and then it decreases with increasing radial
distance. Therefore, the higher-order interac-
tions are more affected at ˇnite temperature.
A similar situation occurs when we increase
the chemical potential up to 100 MeV as in
Fig. 9. Thus, the value of the nucleon mass is
affected by increasing mesonic contributions
in the present model at ˇnite temperature and
chemical potential.

In Fig. 10, the components of the quark
ˇeld (u(r), w(r)) are plotted as functions of
the radial distance r. The ˇeld component
u(r) has a value of 0.06 at r = 0 and decreases
asymptotically to zero as r → ∞, while the

ˇeld component w(r) shows a behavior similar to a P-wave function at zero temperature and
baryonic potential. By taking T = 100 MeV, uB = 100 MeV, the ˇeld component u(r)
strongly increases and has a value of 0.31 at r = 0 fm and decreases asymptotically to zero
as r → ∞. The ˇnite temperature and chemical potential increase the quark contributions
which will have an effect on the nucleon mass.

Fig. 9. The sigma and pion ˇelds plotted as
functions of distance r for T = 0, uB = 0

(solid curves) and for T = 0, uB = 100 MeV

(dashed curves)

Fig. 10. The components of the quark ˇeld
plotted as functions of distance r for T = 0,

uB = 0 (solid curves) and for T = 100 MeV,

uB = 100 MeV (dashed curves)
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The dependence of the nucleon mass on the chemical potential and temperature
at the free parameters mσ = 600 MeV, fπ = 93 MeV and g = 3.98.

All quantities are in MeV

Quantity T = 0, uB = 0 T = 100, uB = 0 uB = 100, T = 100

Quark kinetic energy 676.502 373.668 314.459
Sigma kinetic energy 271.920 56.498 109.318

Pion kinetic energy 210.64 12.716 4.928

Sigma interaction energy 285.42 309.318 455.373
Pion interaction energy Ä296.105 Ä50.933 Ä26.399

Meson static energy 90.457 1910 1175.450
Baryon hedgehog mass (Eq. (46)) 1238.8 2611.3 2033.129

Nucleon mass (Eq. (47)) 1179 2603 2023

In the table, we investigate the effect of ˇnite temperature and chemical potential on the
dynamics of the nucleon for the smallest pion mass (mπ = 20 MeV). We note that the
mesonÄmeson interaction energy and sigma interaction energy strongly increase at uB = 0,
T = 100 MeV which leads to an increase of the nucleon mass. A similar situation occurs
when we take a baryonic chemical potential of uB = 100 MeV. Christov et al. [33] noted that
the nucleon mass increases with increasing temperature up to (3/4)Tc at ˇnite density using
the linear sigma model. Dominguez and Loewe [34] calculated that the nucleon mass increases
with increasing temperature. They studied the nucleon propagator at ˇnite temperature in the
framework of ˇnite energy QCD sum rules. Abu-Shady and Mansour [35] found that the
nucleon mass increases with increasing temperature using the quantized quark sigma model
at ˇnite temperature. In [34, 35], they concluded that the deconˇnement phase transition is
satisˇed in their models at zero chemical potential.

4. SUMMARY AND CONCLUSION

The chiral phase transition, the sigma and pion masses, the critical temperature, and
the nucleon mass are examined in the framework of the extended linear sigma model, in
which the higher-order mesonic interactions are taken into account. We calculated the sigma
and pion masses by minimizing the potential. The ˇeld equations have been solved using
the extended iteration method. We ˇnd that the critical temperature is reduced to lower
values when the higher-order mesonic interactions are included in the linear quark sigma
model. The Goldstone theorem is satisˇed in the chiral limit (mπ = 0) below the critical
point temperature in the (T, uB) plane. Our results suggest that the phase transition is a
second-order phase transition in the chiral limit at zero chemical potential for small values
of temperature up to 100 MeV. A comparison with recent model calculations is presented.
The obtained results are in good agreement with lattice data. The nucleon mass is inves-
tigated in the (T, uB) plane. We conclude that the higher-order mesonic interactions play
an important role in reducing the critical temperature in the (T, uB) plane and increasing
nucleon mass.
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