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An extended quark sigma model which includes higher-order mesonic interactions is studied at the
finite baryonic chemical potential up and temperature 7'. The field equations have been solved in the
mean-field approximation by using the modified iteration method at finite baryonic chemical potential
up and temperature 7. The Goldstone theorem is satisfied below a critical temperature in the chiral
limit for up = 0. As expected from general universality, the chiral phase transition is second-order.
By including the higher-order mesonic interactions, the critical temperature is reduced compared to that
found in recent works and is in good agreement with lattice QCD results. The nucleon mass is examined
in the (up,T) plane, showing a strong dependence on up and 7. We find that an increase in both
the baryonic chemical potential up and the temperature 7' leads to an increase in the values of the
nucleon mass. This is evidence for the quark—gluon deconfinement phase transition at higher values of
temperature.

IIpenct BIeH p CIIMpEHH S KB PKOB 4 CUTM -MOJEb, BKJIIOY IOUI S B3 MMOJEICTBUS ME30HOB BbIC-
MUX HopsaKoB. Mojenb p ccM TPHB eTcs ¢ KOHEYHbIMU O PHOHHBIM XUMHYECKUM MOTEHIHN JIOM UpB H
Temnep Typoit 1T'. IloneBble yp BHEHHS peml I0TCS B NMPHOIMXKEHHH CPEIHEro IOJs C IOMOINBI0 MOIHU-
¢urpos HHOro MeTOg UTEp LMK MT KOHEUHBIX 6 PHOHHOTO XMMHYECKOTrO MOTEHIU 1 UpB W TeMIle-
p Typsl 1. Teopem IonacTOyH BBIOIHSAETCS HUXE KPUTUUECKON TeMIlep Typbl B KUp JIbHOM IIpejerie
ot up = 0. B coorBeTcTBUM ¢ 0XMI HUSAMH OOIIEeH yHUBEPC JTBHOCTH KHUP JIBHBIA () 30BBIH Hepexon
BBITIOJIHAETCS BO BTOpoM nopsake. IIpu yyere ME30HHBIX B3 UMOEHCTBUI BBICIIUX HMOPSIKOB BETMYUH
KPUTHUUYECKOH TeMIlep Typbl CHHX €TCsl [0 CP BHEHHIO C BEIWYHH MU, MOJYYEHHBIMH B HEJ BHO OIIy-
67MKOB HHBIX p OOT X, M H XOOHUTCS B XOPOIIEM COINI CHU C pe3yabT T Mu pemrerounoit KXII. M cc
HYKJIOH P CCM TPUB €TCS B INIOCKOCTH (up,1’) M IEMOHCTPHPYET CHIBHYIO 3 BHCHMOCTb OT up u 1.
Ilox 3 HO, 4TO OJHOBPEMEHHOE yBEIMYEHNEe IOTEHLH J1 U TeMIIep Typbl IPUBOAUT K YBEJIMYEHUIO M CChI
HYKJIOH , YTO SBIISIETCS MPOSBJICHHEM KB PK-TJIIOOHHOTO ¢ 30BOTO NEpexof OeKOH( HHMEHT IIpH BbI-
COKHX TeMIep Typ X.

PACS: 11.10.Wx; 11.30.Rd; 12.39 Fe

INTRODUCTION

The behavior of quantum chromodynamics (QCD) at high temperatures and densities
has received much attention over the past years and is an ongoing topic of both theoretical
and experimental research [1]. Understanding the behavior of strongly interacting matter at
finite temperature and/or density is of fundamental interest and has important applications
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in cosmology, the astrophysics of neutron stars, and the physics of relativistic heavy-ion
collisions. In fact, lattice simulations, which work well for zero baryon chemical potential and
finite temperature, have serious difficulties in dealing with the complex fermion determinant
that arises at finite chemical potential [2]. Different models have been used to study this
problem. One of the effective models for describing the strong-interaction properties is the
linear sigma model, which was suggested by Gell-Mann and Levy [3] to describe nucleons
interacting via sigma (o) and pion (7) exchanges. The linear sigma model clarifies how the
structure of the nucleon respects the constraints imposed by chiral symmetry. Spontaneous
and explicit chiral symmetry breaking require the existence of the pion mass. Furthermore,
the model and its extension provides a good description of the hadron properties at zero
temperature as explained in [4, 5]. At finite temperature, the model provides a good description
of the phase transition by using the Hartree approximation [6-9] within the Cornwall-Jackiw—
Tomboulis (CJT) formalism [10]. The model has been extended to include the finite chemical
potential and finite temperature using different techniques as in [11-13] to study the phase
transition and critical point. At the same time, the phase transition has been studied in
the form of a mixed phase of physical vacuum and baryon matter in the framework of the
Nambu—Jona-Lasinio (NJL) model as in [14, 15].

In recent years, higher-order multiquark interactions have played an important role in
studying the phase transition and critical temperature in the chiral quark models. Osipov et
al. [16] studied the effect of eight-quark interactions on the critical temperature by combining
the three-flavor Nambu-Jona-Lasinio model and ’t Hooft Lagrangians (NJLH). Kashiwa et
al. [17] extended the (NJL) model to eight-quark interactions and studied the effect of these
interactions on the critical temperature point and the phase transition. Hiller et al. [18] studied
the phase diagram for the (NJL) model with 't Hooft and eight-quark interactions. In the
same direction, Abu-Shady studied the effect of eight higher-order mesonic interactions on
nucleon properties at finite temperature [19].

The aim of this work is to study the effect of the eight higher-order mesonic interactions
on the meson masses, the phase transition, the critical point temperature, and the nucleon
mass at finite chemical potential and temperature in the chiral quark sigma model for small
quark mass.

This paper is organized as follows: the linear sigma model with the effective mesonic
potential at finite temperature is presented in Sec.1. Next, the numerical calculations are
presented in Sec. 2 and the results are discussed in Sec. 3. Finally, the summary and conclusion
are presented in Sec. 4.

1. THE CHIRAL QUARK SIGMA MODEL WITH THE EFFECTIVE POTENTIAL

1.1. The Chiral Quark Sigma Model with the Effective Normal Mesonic Potential. The
interactions of the quarks via ¢ and @ meson can be described at finite temperature 7' and
baryonic potential up [20]. The Lagrangian density is

— 1 _
L(r) = ivo,y""V + 3 (Opo0to + Oym - OFm) + gV (o +iysT - m) ¥ — Ufff (o,mw,T,ug),

1)
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where

Ut (0,7, T, up) = U (0, m)—

3p 1
—12/5—)3 VP24 M2+ Tl (exp (“TB——\/PMM?) +1>+
s

T
UR 1
Tl ——= — —\/ P2+ M2 1 2
T (o (<32 - ZVPEIE) +1) | @
with
(0) X 2 22 2
U; (U,Tl')=z<0' + 7% = %) +m2 fro. 3)

In Eq.(2), the first term Ul(o) (o,7) is the contribution from the mesons at tree level. The
divergent second term comes from the negative energy states { E = v/ P? + M2} of the Dirac
sea. It can be partly absorbed in the coupling constant A\? and the constant 2 by using a
renormalization procedure [20]. In the mean-field approximation, the meson fields are treated
as time-independent classical fields. This means that we replace the powers and the products
of the meson fields by their corresponding powers and the products of their expectation
values. So the constituent quark mass is defined as M? = g2 (02 + 71'2). The meson—-meson
interactions in Eq. (3) lead to a hidden chiral SU(2) x SU(2) symmetry assuming a vacuum
expectation value of

(o) = fr, “)
where fr = 93 MeV is the pion decay constant. The final term in Eq.(3) is included to
break the chiral symmetry explicitly. It leads to a partial conservation of axial-vector isospin
current (PCAC). The parameters A\? and v? can be expressed in terms of f, and the masses
of mesons as follows:

m2—m2
)\2: fed s 5
T 5)
2 o My
14 :fﬂ_—ﬁ (6)

1.2. The Effective Mesonic Potential with Higher-Order Mesonic Interactions. In this
subsection, we construct the effective potential with higher-order mesonic interactions in the
linear sigma model. To include higher-order mesonic interactions, we take the meson potential

UQT ©) at zero temperature in the same form as in [21]:

A2 A2 2
Ul m) = Zl (<72+7r2—1/12)2—|—z2 ((02+772)2—1/22) +m2 fro. (7)
Applying the minimizing conditions and the PCAC, we get
mg —m3 m
)\%:vagﬂ V%:fz—A—% (3)
and ) ) )
ms — 3m m
)\2 _ o s 2 _ 4 T 9
2 16f7§ ’ Vy fTr 2)\%.]('7% ( )
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So we rewrite the effective potential in the higher-order mesonic interactions as follows:

UQEH (o,7,T,up) = UQ(O)(U,ﬂ')—

3 1
- 12/(371;3 VP2 M2+ Th (exp (UTB - T\/P2+M2) +1> +
1
+TIn (exp (_U?B_T P2+M2>+1) (10)

We expand the effective potential in the powers of M? which ensures that the potential
satisfies the chiral symmetry when m, — 0 [20]. We obtain

6 (7rt 2 1
U, 1, 5) = U0, m) - (g7 000+ )+

72 \ 180 6 12
2 T? UJQB 2 2
+ 69 (EJFW) (c? +m?). (11)

This technique is successfully used to predict the phase transition and critical temperature as
in [22]. Hence, this technique is suitable for studying the confinement and deconfinement
phases in the (7, up) plane. The finite temperature vacuum can be defined by minimizing
the effective potential as

oUS (o, m, T, up)
Jo

=0. (12)

o=0¢,7=0

Equation (12) represents the condition necessary to satisfy the spontaneous breaking of chiral
symmetry, thereby satisfying the Goldstone theorem, where oo(T,ug) = f-(1 4+ (T, up)).
Using Eqgs. (11) and (12), we obtain

2

T2 U
X2 (02 = v2) 00 + 202 (0 — 12) o + mf, + 1247 <ﬁ + ﬁ) se=0.  (13)

In the chiral limit (m, = 0), Eq.(13) takes the form

m2 9 2

o 2 My ( 4 4y 2 2 (T° | up
Tﬂ(ao_fw)+8—ﬁ(ao_fw)ao+129 e oo = 0. (14)
The square of the sigma mass is obtained as the second derivative of the effective potential
as in [23,24]:

M2 — aQUgﬂ(Jv , Ta UB)
c 0o

Y
o=0¢,7=0

5)

T2 u?
M2 =X (308 — v7) +2\3(T0§ — 3v300) + 1247 (E + 4_:2> '
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Similarly,
27reff T
M72r _ 0 U2 (0—’7;7 auB) 7 (16)
87T o=0¢,7=0
2/ 2 2 2/ 4 2\ 2 2 T? U’QB
=\ (00—1/1)4—2/\2 (UO—V2)00+12g E+4—2 (17)
Substituting Eq. (14) into Egs. (15) and (17) at the chiral limit, we obtain
2 2
2 _ M504 1 4
Mo’(Tqu) - 2f72|— |:1+ 2f4(300 fw):| (18)
and
M2(T,ug) = 0. 19)

From Eq. (14), we obtain two cases:

1. 0o(T,up) # 0. In this case, the phase of spontaneously broken chiral symmetry leads
to M, =0 and M, # 0 as in Egs.(18) and (19). Goldstone’s theorem is satisfied when the
expansion of temperature is taken up to the critical temperature as in [23]. This is depicted
in Fig. 1.

2. 0o(T,up) = 0. Here the phase of restored chiral symmetry is satisfied. From Egs. (15)
2

T
and (17), we obtain M2 = M2 = —\2v? + 12¢° <12 + Z—) as in [9]. By substituting

oo(T,ug) = f=(1 4+ 6(T,up)) into Eq.(13), we obtain

T 2
2ok + st - w12t (T4 1)
'/T

o(T =
T us) ONEFZ - 1N + AT + 2 |

(20)

where the quantity oo(T,up) = fr(1 + 6(T,up)) will be referred to as the chiral phase
transition as in equivalent the chiral condensate [25].

2. NUMERICAL CALCULATIONS AND DISCUSSION

2.1. The Meson Fields in the Effective Potential. In this subsection, we construct the
equations of motion which result from the Lagrangian density in the mean-field approximation
using the so-called «hedgehog ansatz». We assume that the pion field is radially oriented
in space, w(r) = 7(r)f. Due to the hedgehog solution for the pion field, a spatial rotation
is equivalent to a rotation of the pion field in isospin space. Thus, rotating first in isospin
space and then by the same angle in r-space leaves the hedgehog field invariant. Therefore,
the fields o(r) and m(r) are eigenstates of the so-called grand spin G = I + J, where I is
the isospin and J is the angular momentum [26]. The Lagrangian density with the effective
mesonic potential is then given by
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_ 1 —
L(r) =00, y"¥ + 5 (8,000 4 0,7 - O') + gV (0 + ivsT - m) U — U™ (0,7, T), (21)
where the sigma field is expanded around oo(T, up):
o(r) = o'(r) = oo(T, up), (22)

where
JO(Tqu) = fﬂ(1+6(Ta UB)) (23)

Substituting Eq. (22) into Eq. (21), we obtain

— 1
L(r) = (A 4otk 3 (8H0'/8“U/ + 0,7 - o) —
— gU LU + gUo' U + igUysT - w0 — USH (o, m,T,ug), (24)

where the time-independent fields ¢’(r) and m(r) satisfy the Euler-Lagrange equations, and
the quark wave function satisfies the Dirac eigenvalue equation. Substituting Eq. (24) into the
Euler-Lagrange equation, we get

0o’ (r) = g0V — X2(0’ — 00)((0” — 00)* + 72 — v3)—

= 2X3(0" = 00)((0" = 00)* + 7*)(((0" = 00)* + 7*)* = v3)—

2 T UQB 2
— 12 — 4+ = I - - (2
g (12 + 471'2) (U UO) mﬂ"f ( 5)

and
On(r) = igWysTV — A3 ((0 — 00)* + w2 —v¥))7m—

T2 2
- 2(( 0 + T~ oo+ w0 )~ 12 (T B ) m 20)

0 1

where 7T refers to Pauli isospin matrices, 75 = < 10

) . We used the hedgehog ansatz [4]

where
w(r) = n(r)t. (27)

The Dirac equations for the quarks are given in [27]:

= —pr)ut (W = my + () w (28)

and

W W =y + S+ (%—p(r)) w, (29)

where S(r) = g(o'), p(r) = (mw %), and W are the scalar potential, the pseudoscalar
potential, and the eigenvalue of the quark’s spinor W, respectively. Including the color
degrees of freedom, one has to replace g¥W¥ by N.gWWU, where N, = 3 colors, ¢ is the
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coupling constant, and m, is the quark mass. The Dirac wave functions ¥(r) and U(r) are
given by

1 u(r) — 1
U(r)=— and U(r) = —— [u(r)iw(r)]. 30
@ m[@.wm] (r) = 7= [utr) ()] (30
The sigma, pion, and vector densities are given by
— 3
ps = NegWW = 4—g(u2 —w?), 31)
v
. — 6g
Pp = INg¥ysTY = —Euw, (32)
39, 92 2
Yy = —= ) 33
p 47r( +w?) (33)

The boundary conditions for the asymptotes of o(r) and 7(r) as r — 0 are
o(r) ~ ¢ and 7(r) ~ 0. (34)

We solve the Dirac equations (28) and (29) using the fourth-order Rung—Kutta method. Due
to the implicit nonlinearity of Egs. (25) and (26), it is necessary to iterate the solution until
self-consistency is achieved [19].

2.2. The Nucleon Mass. The hedgehog baryon state is made up of three quarks in identical
spinor states and hence in identical color singlet states. The hedgehog baryon state |B) is a
linear combination of N (I = J =1/2) and A(] = J = 3/2) states [4]:

1

B) = VM |J=],K=-1I), 35
|B) J}A;( M e 5) (35)

where we define the baryon energy as
E|B) = Mu |B), (36)

where My is the arithmetic mean of My and Ma with an experimental value of 1086 MeV
at low energy. The energy density € is given by

oL
g = m@o@z — L, (37)

where
=, 1 ne2 1 2
€= —‘I’(ZV-’Y—F’I’FLQ)\P—FE(VU) +§(V-7r) -
— gU(iysT -+ o)V 4+ USH (o', 70, T, up) — UsT (0! = 0,m =0), (38)

which includes terms for the quark, o’ and 7 kinetic energy, the quark—-meson interaction,
and the meson—-meson interaction. The kinetic energy terms can be re-expressed via the Dirac
eigenvalue equation of motion:

(WP, + g(o + ivsT - £m(r)))¥ = 0. (39)
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Hence we obtain the kinetic energy of the quark as

(K E)quark = —(mq — S(r)) ps(r) + Epu(r) + p(r) pp(r). (40)
The kinetic energy of the sigma field is

1 —_ oUst
(KE)sigma = 50’ {g\I/\I/ ~ o’ ] . 41)
Similarly for the pion field, we have
1 [ — oust
(KE)pion = 57 {g\Ili’yg,\I/ - =2 } : (42)
The meson static energy is given by
Bt = UsT (0!, m, Tyup) — UL (6 =0, =0, T =0, up =0). (43)
The sigma—quark interaction energy is
(mg — go’) ps. (44)
The sigma—pion interaction energy is
—gTPp. (45)
Now we can write the formula for the energy calculation of the hedgehog mass:
(o)
My = /d3r5(r) =NJW + 47r/r2 dre(r). (46)
0
Therefore, we can derive the mass of the nucleon mass My as in [28]:
3
MN:MH—ZZ, 47)

where [ is the moment of inertia, which can be expressed only in terms of the radial functions
of the pion and component quark fields [28].

3. DISCUSSION OF THE RESULTS

We study the phase transition, the meson masses, and the nucleon mass in the quark sigma
model, in which the higher-order mesonic interactions up to the eighth-order interactions are
included. We study the case with two massless quark flavors (i.e., Ny = 2) and N, = 3, where
N, is the number of colors. Concentrating only on the thermal effects and ignoring quantum
corrections, we examine the effect of higher-order mesonic interactions on the meson masses,
and phase transition, and nucleon mass below the critical point temperature. By minimizing
the effective mesonic potential USH(J, 7), we obtained the gap equations (Egs. (15) and (17)).
This method is used in previous works such as [23,24]. We solved the field equations in
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the mean-field approximation by using the extended iteration method described in [19]. For
numerical computation, we used the model parameters at zero temperature as the initial
conditions, namely, we took m, = 500—700 MeV, f, = 93 MeV, and the coupling constant
g as a free parameter.

3.1. Meson Masses. We start by discussing the effect of the higher-order mesonic inter-
actions on the sigma and pion masses as seen in Figs. 1-3 at zero chemical potential. The
calculated sigma and pion masses are shown in the chiral limit (m, = 0). In Fig.1, the
effective sigma and pion masses are plotted as functions of temperature in the chiral limit.
The sigma and pion masses satisfy the minimization condition in Eq.(14), which leads to
a pion mass of zero below the critical temperature and a sigma mass which decreases with
increasing temperature, vanishing at T, = 153.43 MeV. Therefore, the Goldstone theorem is
satisfied in the (7', up) plane. We conclude that the minimization condition of the symmetry
of the model is necessary to satisfy the Goldstone theorem below the critical temperature
at zero baryonic chemical potential. This conclusion agrees with the findings of Nemoto
et al. [24], who showed that the Goldstone theorem is satisfied when the chiral symmetry
is spontaneously broken. Also, Phat and Thu [13] showed that the Goldstone theorem is
satisfied when the chiral symmetry is spontaneously broken in the (7', ;) plane, where pg is
the isospin chemical potential.

It is important to examine the effect of the coupling constant g and sigma mass m, on
the behavior of the effective meson mass at the zero chemical potential. In Fig. 2, the meson
mass is plotted as a function of temperature for two values of sigma masses (m, = 500
and m, = 600 MeV). The qualitative features of the effective sigma mass are not changed
by increasing the sigma mass. The change only occurs for the critical point temperature.
The change of the value 7. = 130 MeV to T, = 153 MeV corresponds to m, = 500 MeV
and m, = 600 MeV. In Fig.3, the inverse occurs by increasing the coupling constant g.

600 1600
= %
= = I
g g 1200 —
g 400 % |
§ Sigma mass =
J 800

Sigma mass = 500 MeV
200 Sigma mass = 600 MeV

Pion mass Pion mass

T I T I T I T I T
0 40 80 120 160 200 0 40 80 120 160 200

T, MeV
Fig. 1. The meson mass plotted as a function of
temperature at zero baryonic chemical potential
(up = 0) in the chiral limit at m, = 600 MeV
and g = 2.26

T, MeV
Fig. 2. The meson mass plotted as a function
of temperature for two values of the sigma mass
at zero baryonic chemical potential (ug = 0) in
the chiral limit and for g = 2.26
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Fig. 3. The meson mass plotted as a function of
temperature at zero baryonic chemical potential
(up = 0) in the chiral limit for two values of
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Fig. 4. The meson mass plotted as a function of

temperature in the chiral limit forup = 0, up =
100 MeV at m, = 600 MeV and g = 2.26

the coupling constant g and m, = 600 MeV

The change of the value T, = 153 MeV to T, = 179 MeV corresponds to g = 2.26 and
g = 1.96. We know that an increase in the coupling constant increases the coupling between
the meson and quark fields, which leads to the hadron becoming more bound. Therefore, we
deduce that the qualitative features of the meson mass are not changed in the range parameters
mentioned above. In Fig.4, the meson mass is plotted as a function of temperature at zero
baryonic chemical potential at a fixed up = 100 MeV. The qualitative features of sigma
mass are not changed by increasing the chemical potential up to up = 100 MeV. The
value of the sigma mass shifts to lower values in comparison with the behavior of sigma at
zero chemical potential. In comparison with the original quark sigma model, Scanvenius et
al. [20] found that the sigma mass is reduced by increasing up at the amount of a physical
pion mass.

3.2. The Phase Diagram. It is important to investigate the phase transition in the (T, up)
plane in the presence of higher-order mesonic interactions. At zero baryonic chemical poten-
tial, lattice QCD predicts that the phase transition is restored at about 7, = 151 MeV [29].
Many attempts have been made to study the phase transition and critical point using the quark
models, such as the quark sigma model, as well as the NJL model and its extensions. In
Fig.5, we plot the phase transition as a function of temperature at the zero chemical potential
and finite chemical potential (up = 150 MeV). At zero chemical potential, we note that the
phase is a continuous curve and tends to zero at 7. = 153.43 MeV. This indicates that the
phase transition is a second-order transition. The second-order phase transition is predicted
in [13,30] at zero baryonic chemical potential using the quark sigma model and the NJL
model. Therefore, the higher-order mesonic interactions are not affected on the qualitative
feature of the phase transition. By increasing the baryonic potential up to up = 150 MeV, the
phase transition keeps the qualitative feature of being a second-order transition. The effect
only appears when the value of the critical temperature is reduced to 7, = 130 MeV. We
note that 7, = 153.43 MeV at up = 0. The Wuppertal-Budapest group [29] found that
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the transition temperature for the chiral restoration of w, d quarks equals 7. = 151 MeV.
Hence, the present result of 7 is in good agreement with lattice QCD results. In the original
quark sigma model, the critical temperature is large in comparison with lattice data at a zero
chemical potential. Consequently, the higher-order mesonic interactions play an important
role for reducing critical temperature. In com-
100 ——— Chemical potential = 0 parison with the Nambu—Jona-Lasinio model
----- Chemical potential = 150 MeV with interactions of 't Hooft Lagrangians
(NJLH) [16], the authors show T, = 200 MeV
which is large in comparison with the lat-
tice QCD result. By including higher-order
quark interactions in the NJLH model, the
critical temperature assumes a lower value,
which is in agreement with lattice data. There-
fore, our results indicate the same conclu-
sion as indicated by the quark sigma model.
Taniguchi and Yoshida [30] studied the chi-
ral symmetry of QCD at finite temperature
and chemical potential using the Schwinger—
‘ ‘ ‘ ‘ ‘ Dyson equation in the improved ladder ap-
0 40 80 120 160 proximation. They have a second-order phase
T, MeV transition at the temperature 7, = 169 MeV
Fig. 5. The phase transition oo(T,up) plotted along the zero chemical potential. The present
as a function of the temperature at zero chemical results are therefore in good agreement with
potential and nonzero chemical potential the results of Taniguchi and Yoshida [30]
along the zero chemical potential. Kashiwa
et al. [17] studied the inclusion of the higher-order interaction term o* in the NJL
model and found that the phase transition remains unchanged by including ¢*. In ad-
dition, they found that the NJL model, when extended to include a higher-order term
of the sigma field (0*), leads to a reduction in the critical point temperature from
T. = 190 MeV to T, = 180 MeV. Therefore, our conclusion agrees with that of the
NJL model.

At finite baryonic chemical potential, it is more difficult to predict the phase transition
using lattice QCD due to the sign problem. Phenomenology models such as the quark sigma
model and NJL model are used to describe the phase transition. The phase transition and
critical point depend on the parameters of the models. In the quark sigma model, there is
a first-order phase transition at zero temperature and a second-order transition at the zero
chemical potential in the (T, up) plane [30]. Therefore, the critical point is found from
crossing two lines of the two phases. In Fig.6, we note that the phase transition is a con-
tinuous curve and tends to zero at up = 278 MeV at T' = 0. The phase transition has
similar behavior up to 7" = 100 MeV, indicating that the phase transition is a second-order
transition for small finite temperature. Hashimota et al. [31] found that the phase transition
is a second order for zero chemical potential and small finite temperature. Moreover, the
phase transition is still second-order at finite temperature at fixed up = 100 MeV using the
effective potential for the QCD-like theory. Sasaki et al. [32] studied the phase transition and
a critical point using the Polyakov—Nambu—Jona-Lasinio (PNJL) model and found the phase
transition does not change when a Polyakov loop in the (7', u,) plane at a zero isospin chemi-
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20 A
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Fig. 6. The phase transition oo(7,ug) plotted
as a function of the chemical potential for zero
temperature and finite temperature 7" = 100 MeV
at m, = 600 MeV and g = 2.26
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cal potential is included. However, the location point moves from (ug4, T') = (178,152) MeV
to (ug,T) = (187,130) MeV. Moreover, the critical temperature 7, = 180 MeV is large
in comparison with the lattice data. Ké&hdrd and Tuominen [12] studied the effect of the
Polyakov loop on the phase diagram and critical point in the linear sigma model and the
NJL model and found the critical temperature is in the range of 225—290 MeV at zero
chemical potential. In Fig.7, the phase transition oo(7,upg) is plotted as a function of tem-
perature for the original sigma model and the higher-order sigma model. We note that the
two phases tend to zero as the continuous functions of temperature. This behavior is inter-
preted as a second-order phase transition. Moreover, the critical temperature is reduced to
T. = 153 MeV by including the higher-order mesonic interactions up to eighth-order in the
original sigma model. The obtained value 7. = 153 MeV is in good agreement with lattice
data [29].

3.3. The Nucleon Mass. In this subsection, we investigate the effect of finite temperature
and baryonic potential on the nucleon mass. The nucleon mass is calculated in the mean-
field approximation by using the extended iteration method as in [19]. The changes in
the sigma field, pion field, and the components of the quark field under the assumptions
of finite temperature and baryonic chemical potential will affect the value of the nucleon
mass. Figure 8 represents the sigma field and pion field as functions of radial distance ()
at zero temperature and chemical potential in comparison with the behavior of the sigma and
pion fields at a finite temperature equal to 100 MeV and zero chemical potential. At zero
temperature and chemical potential (low energy), the sigma field shows monotonic behavior.
It starts at the value f, and decreases with increasing radial distance r until reaching the
value of —fr. The pion field 7 (r) has a P-wave form with a maximum at » = 0.57 fm,
decreasing asymptotically, reaching a value of zero as » — oo. This behavior of the sigma
and pion fields is in agreement [4] in the low energy limits (I = 0, up = 0).
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Fig. 8. The sigma and pion fields in units of fr
plotted as functions of distance r for 7' = 0 and
up = 0 (solid curves) and for 7" = 100 MeV and
up = 0 (dashed curves)

By including the finite temperature up to
T = 100 MeV in the higher-order quark sigma
model, the sigma field shifts to higher val-
ues and then decreases with increasing radial
distance down to ¢ = —f; MeV. The pion
field is shifted to higher values in compari-
son with the behavior at (T" = 0, up = 0)
and then it decreases with increasing radial
distance. Therefore, the higher-order interac-
tions are more affected at finite temperature.
A similar situation occurs when we increase
the chemical potential up to 100 MeV as in
Fig.9. Thus, the value of the nucleon mass is
affected by increasing mesonic contributions
in the present model at finite temperature and
chemical potential.

In Fig. 10, the components of the quark
field (u(r),w(r)) are plotted as functions of
the radial distance r. The field component
u(r) has a value of 0.06 at » = 0 and decreases
asymptotically to zero as r — oo, while the

field component w(r) shows a behavior similar to a P-wave function at zero temperature and
baryonic potential. By taking 7" = 100 MeV, up = 100 MeV, the field component u(r)
strongly increases and has a value of 0.31 at » = 0 fm and decreases asymptotically to zero
as 7 — oo. The finite temperature and chemical potential increase the quark contributions
which will have an effect on the nucleon mass.
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Fig. 9. The sigma and pion fields plotted as Fig. 10. The components of the quark field

functions of distance r for T" = 0, up = 0
(solid curves) and for T' = 0, up = 100 MeV
(dashed curves)

plotted as functions of distance r for 7' = 0,
up = 0 (solid curves) and for 7' = 100 MeV,
up = 100 MeV (dashed curves)
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The dependence of the nucleon mass on the chemical potential and temperature
at the free parameters m, = 600 MeV, fr = 93 MeV and g = 3.98.
All quantities are in MeV

Quantity T=0,up=0|T=100, up =0 | up =100,7 = 100

Quark kinetic energy 676.502 373.668 314.459
Sigma kinetic energy 271.920 56.498 109.318
Pion kinetic energy 210.64 12.716 4.928

Sigma interaction energy 285.42 309.318 455.373
Pion interaction energy -296.105 -50.933 -26.399
Meson static energy 90.457 1910 1175.450
Baryon hedgehog mass (Eq. (46)) 1238.8 2611.3 2033.129
Nucleon mass (Eq. (47)) 1179 2603 2023

In the table, we investigate the effect of finite temperature and chemical potential on the
dynamics of the nucleon for the smallest pion mass (m, = 20 MeV). We note that the
meson—meson interaction energy and sigma interaction energy strongly increase at up = 0,
T = 100 MeV which leads to an increase of the nucleon mass. A similar situation occurs
when we take a baryonic chemical potential of ug = 100 MeV. Christov et al. [33] noted that
the nucleon mass increases with increasing temperature up to (3/4)7T, at finite density using
the linear sigma model. Dominguez and Loewe [34] calculated that the nucleon mass increases
with increasing temperature. They studied the nucleon propagator at finite temperature in the
framework of finite energy QCD sum rules. Abu-Shady and Mansour [35] found that the
nucleon mass increases with increasing temperature using the quantized quark sigma model
at finite temperature. In [34,35], they concluded that the deconfinement phase transition is
satisfied in their models at zero chemical potential.

4. SUMMARY AND CONCLUSION

The chiral phase transition, the sigma and pion masses, the critical temperature, and
the nucleon mass are examined in the framework of the extended linear sigma model, in
which the higher-order mesonic interactions are taken into account. We calculated the sigma
and pion masses by minimizing the potential. The field equations have been solved using
the extended iteration method. We find that the critical temperature is reduced to lower
values when the higher-order mesonic interactions are included in the linear quark sigma
model. The Goldstone theorem is satisfied in the chiral limit (m, = 0) below the critical
point temperature in the (7, up) plane. Our results suggest that the phase transition is a
second-order phase transition in the chiral limit at zero chemical potential for small values
of temperature up to 100 MeV. A comparison with recent model calculations is presented.
The obtained results are in good agreement with lattice data. The nucleon mass is inves-
tigated in the (7, up) plane. We conclude that the higher-order mesonic interactions play
an important role in reducing the critical temperature in the (7, upg) plane and increasing
nucleon mass.
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