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REALIZATIONS OF LIE ALGEBRAS
M. Nesterenko 1

Institute of Mathematics of NAS of Ukraine, Kyiv

Two main approaches to the construction of realizations are discussed. The practical calculation
algorithm, based on the method of I. Shirokov, is proposed. A new realization of the Poincar	e algebra
p(1, 3) is presented as an example.

PACS: 02.20.Sv

INTRODUCTION

Realizations of Lie algebras by vector ˇelds are widely applicable, e.g., in integration of
ordinary differential equations, in group classiˇcation of partial differential equations, theory
of differential invariants, general relativity and other physical problems such as classiˇca-
tion of gravity ˇelds of a general form under the motion groups and groups of conformal
transformations, or quantization based on Noether symmetries, see also [1, 2].

There are many papers devoted to the problem of construction of realizations of Lie
algebras, but here we concentrate only on two of them, and for more details the reader is
referred to the references in [3] and [4].

The paper is arranged as follows. In the ˇrst section we give the deˇnition of realization,
explain the direct method and establish connection between linear realizations and representa-
tions of Lie algebras. The second and the third sections are devoted to the algebraic method,
its properties and construction of a new realization of the Poincar	e algebra p(1, 3).

1. REALIZATIONS AND REPRESENTATIONS

Let g be an n-dimensional Lie algebra over a ˇeld R or C. We denote an open subset
of Rm as M and the Lie algebra of vector ˇelds on it as Vect(M). In this paper we
consider vector ˇelds in a form of linear ˇrst-order differential operators with analytical
coefˇcients and the Lie product of vector ˇelds is given by their commutator. The groups
of all automorphisms of g and its inner automorphisms are denoted by Aut(g) and Int(g),
respectively. Then, in contrast to the classical deˇnition of the representation of a Lie algebra,
the notion of realization of a Lie algebra is deˇned as follows.
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A realization of a Lie algebra g in vector ˇelds on M is a homomorphism R : g →
Vect(M). The realization is faithful if kerR = {0} and unfaithful otherwise.

Note that realizations of a Lie algebra are usually constructed within Int(g)-equivalence
(strong equivalence) or within Aut(g)/Int(g)-equivalence (weak equivalence).

If the realizations with linear coefˇcients do exist for a given Lie algebra, then the connec-
tion between these realizations and representations can be established in the following way.

Let an n-dimensional Lie algebra g is realized by n linearly independent vector ˇelds
of the form

ei =
m∑

k=1

(
m∑

l=1

al
ikxl

)
∂k,

hereafter ∂k = ∂/∂xk, al
ik ∈ R (or C) and k, l, p, q = 1, 2, . . . , m.

Using the matrices

Ai =

⎛
⎜⎜⎜⎝

a1
i1 a1

i2 · · · a1
im

a2
i1 a2

i2 · · · a2
im

...
...

. . .
...

am
i1 am

i2 · · · am
im

⎞
⎟⎟⎟⎠ , D =

⎛
⎜⎜⎜⎝

∂1

∂2

...
∂m

⎞
⎟⎟⎟⎠ and X = (x1, x2, . . . , xm),

we can rewrite the basis elements as ei = XAiD. Then, as far as [ei, ej ] = Ck
ijei, the

matrices Ai satisfy the same commutation relations [Ai, Aj ] = Ck
ijAi and, therefore, form a

representation of the initial Lie algebra.
To classify realizations of an n-dimensional Lie algebra g in the most direct way, we

have to take n linearly independent vector ˇelds of the general form ei = ξik(x)∂k , x =
(x1, x2, . . . , xm) ∈ M , and require them to satisfy the commutation relations of g. This
method was developed in [4] and results in the necessity to solve a complicated nonlinear
system of PDEs and to study the inequivalence of the obtained realizations.

2. ALGEBRAIC METHOD

The alternative purely algebraic method of construction of realizations was developed by
I. Shirokov et al. [3]. Below we skip all the geometric details and propose an extraction that
gives a short and practical scheme for the direct construction of vector ˇelds.

Let h be a subalgebra of g with a complementary part e1, . . . , em, then, before the
calculation, the basis of Lie algebra is to be rearranged in the following way: all the subalgebra
basis elements should be written (enumerated) ˇrst and the arbitrary chosen complementary
part should be written (enumerated) after that.

Therefore, the coefˇcients ξi
k(x) of the vector ˇelds can be recovered from the one-forms

using the equation ωj
i (x)ξi

k(x) = δj
k.

The differential one-forms are calculated as follows:

ωj
i (x) =

(
A(1)(x1)A(2)(x2) · · ·A(i−1)(xi−1)

)j

i
,

where i = 2, 3, . . . , n, ωj
1 = δj

1.
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The matrices A are calculated from the system:

{
Ȧ(l)(t) = −ad elA

(l)(t),
A(l)(0) = I.

The proposed algorithm produces polynomial coefˇcients in the partial differential oper-
ators only in case matrices of the adjoint representation of the basis elements are nilpotent.
So, according to Engel's theorem, in order to obtain the realization in the simplest form the
nilpotent linear combinations of basis elements are to be chosen.

The other important fact that allows us to improve realizations is the basis which gives
the simplest appearance of the Killing form.

Suppose that, using the algebraic approach for a subalgebra h, we have constructed a
realization given by the following basis elements:

ei = ξi1(x1, x2, . . . , xm)∂1 + ξi2(x1, x2, . . . , xm)∂2 + . . . + ξim(x1, x2, . . . , xm)∂m,

then the number of necessary variables x1, . . . , xm coincides with the dimension of the
space complementary to h, namely, m = dim(g) − dim(h). In particular, this means that
the transitive realization (the realization that corresponds to zero subalgebra) can always be
realized in n = dim(g) variables.

The structure of realizations constructed by means of the algebraic method has one more
useful property: a realization corresponding to a subalgebra h1 can be constructed by means
of projection from a realization corresponding to a subalgebra h2 if h2 ⊂ h1.

3. EXAMPLE OF NEW REALIZATION

Consider the Poincar	e algebra p(1, 3) generated by the operators Pα, Jαβ (α < β; α, β =
0, 1, 2, 3) with the following commutation relations:

[Pα, Pβ ] = 0, [Pα, Jβγ ] = gαβPγ − gαγPβ ,

[Jαβ , Jγδ] = gαδJβγ + gβγJαδ − gαγJβδ − gβδJαγ ,

where −g00 = g11 = g22 = g33 = −1, gαβ = 0, if α �= β; α, β, γ, δ = 0, 1, 2, 3.
Realization that corresponds to the subalgebra

h = 〈P0 + P3, P1, P2, P0 − P3 + J12, J01 − J13, J02 − J23〉

with the complementary part {J01 + J13, J02 + J23, J03, P0 − P3} requires four variables x1,
x2, x3, x4 and has the form

P0 =
1
2
(1 + x2

1 + x2
2)e

x3∂4, P1 = −x1e
x3∂4, P2 = −x2e

x3∂4,

P3 =
1
2
(x2

1 + x2
2 − 1)ex3∂4, J01 = J ′

01 + x1∂3 − x2∂4,

J02 = J ′
02 + x2∂3 + x1∂4, J03 = J ′

03 + ∂3, J12 = J ′
12 − ∂4,

J13 = J ′
13 − x1∂3 + x2∂4, J23 = J ′

23 − x2∂3 − x1∂4,
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where

J ′
01 =

1
2

(
1 − x2

1 + x2
2

)
∂1 − x1x2∂2, J ′

02 = −x1x2∂1 +
1
2

(
1 + x2

1 − x2
2

)
∂2,

J ′
03 = −x1∂1 − x2∂2, J ′

12 = x2∂1 − x1∂2,

J ′
13 =

1
2

(
1 + x2

1 − x2
2

)
∂1 + x1x2∂2, J ′

23 = x1x2∂1 +
1
2

(
1 − x2

1 + x2
2

)
∂2.

Note that the above elements J ′
01, J ′

02, J ′
03, J ′

12, J ′
13, J ′

23 form the unique transitive
realization of the Lorentz algebra and this realization together with the zero operators Pi = 0,
i = 0, 1, 2, 3, corresponds to the eight-dimensional subalgebra of p(1, 3). It is obvious that this
realization can be obtained by means of projection. The realization of p(1, 3) corresponding
to its (unique!) eight-dimensional subalgebra is necessarily unfaithful, which is caused by the
ideal 〈P0, P1, P2, P3〉 that is contained in the eight-dimensional subalgebra.
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