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A MATHEMATICAL STRUCTURE FOR NUCLEI

M. Fabre de la Ripelle1
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A method is proposed to obtain a translationally invariant solution to the Schréodinger equation
including two-body correlation. The conditions to obtain translationally invariant excited state are
discussed. It is explained why ground states are surrounded by coupled satellite states cooperating to
the binding energy.
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This paper is the result of a long procedure leading to the proposal of a mathematical
structure translationally invariant for nuclei.

We assume that the wave functions of nuclei are eigenstates of a Schréodinger equation
for bound systems of identical fermions. The starting point of a mathematically exact method
originates from papers published in ©Yadernaya Fizikaª on the K-harmonic during the 1960s,
see references in [1]. The method was plagued by the large degeneracy of the K-harmonics,
i.e., by the large number of polynomial of the same degree, a number increasing exponentially
with the number of particles, i.e., with the dimension of the space spanned by the particle
coordinates of the interacting system leading to an intractable number of coupled differential
equations needed to obtain a converged solution of the Schréodinger equation.

This problem was solved in 1969 by the introduction of the potential harmonics reducing to
only one polynomial for each degree, the set of polynomials needed for a complete expansion
of a two-body function where pairs are in s-state [2], for instance, a pairwise central potential.

When Mayer and Jensen discovered the similarity between the quantum numbers of nuclei
in ground state and those of eigenstates of the Harmonic Oscillator Model (HOM) in ground
state, two interpretations became available.

Writing the Schréodinger equation as

A∑
1

(−Δi + x2
i − Ei)Ψi(xi) = 0, Ψi(xi) =

A∏
1

Ψ(xi), E =
A∑
1

Ei (1)
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for a system of A identical particles of coordinates (x1, . . . ,xA) leads to an Independent
Particle Model (IPM) where each particle moves in a common central potential well V (xi),
xi = |xi| and Δi is the Laplace operator of the ith particle and Ei the eigen value for an
eigenstate Ψi(xi) −−−−→

xi→∞
0.

But when the Schréodinger equation is written as

(−Δ + r2 − E)Ψ(x) = 0, (2)

where Δ =
A∑
1

Δi is the Laplace operator in the D = 3A dimensional space spanned by the

particles coordinates, for r2 =
A∑
1

x2
i and x = (x1, . . . ,xA), the wave function Ψ(x) −−−−→

|x|→∞
0

is invariant by rotation in the whole space spanned by the particles leading to an eigenstate

Ψ(x) = Y[L](Ω)Φ(r), r = |x|. (3)

It is the product of a Hyperspherical Harmonic (HH) Y[L](Ω), where [L] is a set of
3A − 1 quantum numbers including the degree L of the associated Harmonic Polynomial
(HP) rLY[L](Ω) in polar coordinates x(r, Ω) in the D-dimensional space.

This time the discovery of Mayer and Jensen is interpreted as a collective model, the
©Hyperspherical Modelª (HM).

By writing that rLY[L](Ω) is an HP, i.e., ΔrLY[L](Ω) = 0, one ˇnds the eigenvalue

(Δ + L(L + D − 2))Y[L](Ω) = 0 and with Φ(r) = u(r)/r(D−1)/2, the radial equation for a
Hypercentral Potential V (r) becomes{

− d2

dr2
+

L(L + 1)
r2

+ V (r) − E

}
u(r) = 0, (4)

where L = L + (D − 3)/2 in a center-of-mass coordinate system (X, ξi) and ξi are Jacobi

coordinates with r2 =
A−1∑

1
ξ2
i .

It results from Eq. (4) that ground states are obtained when the degree L of the HP
describing the state is Lm the lowest available.

For bosons where all polynomials can be in 1s state Lm = 0 and the polynomial is a
constant Y[0]. In this case the set of HH in the D-dimensional space can be written as a
product of Jacobi polynomials [2].

They are polynomials associated with the angular coordinates Ω which fulˇll the equation∫
P[K](Ω)P[K′](Ω) dΩ = δ[K],[K′], where [K] and [K ′] are the D − 1 quantum numbers

deˇning the HP of degree K and K ′, respectively.
For fermions the HP must be antisymmetric by exchange of the particles. The antisymme-

try property is provided by a Slater determinant. Since an HP is a homogeneous polynomial,
the building blocks are also homogeneous polynomials in the space where fermions move.

One requires that the state must be translationally invariant. From this needed property
the IPM must be rejected.

If the ground state is described by a homogeneous polynomial Slater determinant of lowest
degree, any symmetrical scalar operator seeking to lower the degree of such a polynomial
gives zero when it is applied to the determinant.
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Thus, the determinant is a translationally invariant harmonic polynomial.
Let us assume that the fermions are moving in a one-dimensional space. The position

of the ith particle is given by one coordinate xi and the Slater determinant becomes a
Vandermond determinant. D(x) = ‖1xx2 . . . xn‖ = Π︸︷︷︸

i>j

(xi − xj) for a fermions system.

It is obviously translationally invariant.
If one raises the degree of the determinant, by, for instance, raising n to n + 1, it loses

the translational invariance.
Therefore, there is only one determinant for deˇning a ground state for fermions in a

one-dimensional space.
But by introducing the spin of the fermions into the determinant, it becomes D(x, spin) =

‖ααx1 . . . αxn
1 ββx1 . . . βxn

1 ‖ for a system of 2(n + 1) fermions where the spins are ˇlled
with α = spin up and β = spin down.

Let us call Dα the determinant where n is raised by one for the α spin and Dβ the same
operation with the spin β. Then Dα −Dβ becomes translationally invariant and describes an
excited state.

The introduction of spin enables one to generate new states.
The degree of the Vandermond determinant is n(n+1)/2 in an (n+1)-dimensional space.
Taking the two spins into account, L = n(n + 2) − 1/2 in (4) is half integer.
Let us turn now to fermions systems in physical d-dimensional space. While there is

only one homogeneous polynomial (xK
1 ) for each degree K in a one-dimensional space, there

are many independent homogeneous polynomials for d > 1. The number of independent
polynomials of degree K is equal to the number of terms in the expansion of (x1 + x2 +
. . . + xd)K in a d-dimensional space.

The Slater determinant is constructed like the Vandermond determinant except that the
term xK

1 becomes P[K](x1) the set of homogeneous polynomials of degree K . Then one
ˇlls the determinant from left to right by using successively all polynomials of degree K
for growing K . The building blocks can be written as the product |xd|2nj P[�j ](xd), |xd|2 =
d∑

i=1

x2
i , 2nj + �j = �m, where P[�j ](xd), xd = (x1, x2, . . . , xd) is a harmonic polynomial

of degree �j in the d-space and [�j ] the set of d − 1 quantum numbers deˇning the HP.
The �j extend from 0 or 1 modulo 2 according to the K parity up to �m = K the degree of
the polynomial. The set of homogeneous polynomials of degree �m are the elements of the
�m-shell.

The concept of Shells is therefore associated with the degree of the homogeneous poly-
nomials used in the construction of the antisymmetric harmonic polynomial deˇning
a state.

In the physical d = 3-dimensional space the number of independent polynomials of
degree �m is (�m + 1)(�m + 2)/2, i.e., 1, 3, 6, 10 for �m = 0, 1, 2, 3, respectively. By in-
troducing the spin, the number of terms in a closed shell are 2, 6, 12, 20 for �m = 0, 1,
2, 3. The closed shell self-conjugate N = Z nuclei appear for A = 4, 16, 40 and 80,
respectively.

The building blocks in the Slater determinant are the homogeneous polynomials of degree

(2nj + �j) which can be written as the product of x
2nj+�j

i Y
mj

�j
(ωi) for the ith particle and

jth column in polar coordinates xi(xi, ωi), in terms of the spherical harmonics Y
mj

�j
(ωi).
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On the average, the binding energy of nuclei increases linearly with the number of
nucleons. But after the closure of a Shell the increase of binding energy of the next nucleons
undergo a drop.

It is customarily believed, in the IPM, that these shell effects proceed from the poten-
tial well.

In the Hyperspherical Model it is generated by a sudden increase in the strength of the
kinetic energy central barrier.

Indeed, when a new nucleon is introduced in the last open �m-shell the L in (4) increases
by �m + 3/2 all over the shell, but when the �m-shell is closed, the next nucleon appears in
the next (�m +1)-shell and L increases by �m +5/2, i.e., generating a supplementary increase
of the strength of the kinetic energy central barrier and a smaller increase of binding energy.

In order to generate excited states, the nucleons might either play with the free states in
the last shell or to be raised beyond the last shell.

Let �m be the degree of the building blocks in the last shell. If one raises a nucleon to
the (�m + 2)-shell, it cannot generate a translationally invariant Slater determinant and then
cannot describe a state.

Indeed, if xi − X, where X is the center-of-mass coordinate, is substituted for xi in
x

2nj+�j

i Y
mj

�j
(ωi), it can be expanded in terms of the harmonic polynomials XLY M

L (ωX)∑
L,M

XLY M
L (ωX)PM

2nj+�j−L(xi), where the homogeneous polynomial of degree 2nj + �j −L

can be expanded in terms of the building blocks of degree 2nj + �j − L.
If at least one of these building blocks is not occupied in the determinant, it is not

translationally invariant.
Since the �m-shell is the last shell, the (�m + 1)-shell is free and any excitation to the

higher shell generates a not translationally invariant determinant and cannot describe a state.
Let us turn now to the (�m + 1)-shell.
If one raises a nucleon from the �m-shell to the (�m +1)-shell in a state x�

iY
m
� (ωi), where

� is larger than all ˇlled (� − 1)-states, then according to the expansion formula it can be an
excited state.

For instance, if in the �m = 3-shell all the 1f -states are ˇlled, a 1g-state can be introduced
before the complete ˇlling of the 3-shell states. It could even be a ground state if it gives
more binding energy than a state constructed only with building blocks of the �m-shell.

Let us introduce the spin and isospin ζ = 3/2, 1/2, −1/2, −3/2 for proton spin up
and down and neutron spin up and down, respectively. The Slater determinant is ˇlled
independently for each ζ with growing degree of homogeneous polynomials. Let D[1,ζ] be
the determinant describing an alpha particle where the nucleon with spinÄisospin state ζ is
in p-state. It is not translationally invariant but the mixture

∑
ζ

aζD[1,ζ], where
∑
ζ

aζ = 0, is

translationally invariant and describes an excited p-state.

Let P
(ε)
ij , ε = σ, τ, στ , be the operators for the exchange of spin, isospin, spinÄisospin be-

tween the columns i andj of the determinant, respectively. When P σ
ij or P τ

ij operates between
states where ζi + ζj = 0, it exchanges the couple of states (3/2,−3/2) and (1/2,−1/2).
It creates a structure where two pairs of spinÄisospin states are identical, then canceling the
determinant.

When the scalar operator xi · xjP
(ε)
ij (ε = σ, τ) is applied to an alpha particle, it creates

an excited state where two nucleons are in p-state.
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This state is coupled to the α particle in ground state by the spin and isospin exchange
operators in the potential, the same mechanism holds for nuclei where the ground state is
described by a determinant of degree minimum.

It creates coupled satellite states where two nucleons are excited to the next shell.
The same situation occurs when (xi ⊗ xj) is coupled to an � = 2 orbital state. Then the

coupling is generated either by the deformation of the nucleus or by the tensor force.
Then by describing a closed shell nucleus by a single Slater determinant and computing

the correlations with a Jastrov function, one neglects the contribution of all satellite states
coupled by the exchange operators in the potential to the determinant of degree minimum
deˇning the state.

One can wonder whether the existence of satellite states created by operators in s- or
d-state is not related to the interacting boson model.

Our purpose is to give a method for solving the Schréodinger equation

{Δ + V (x) − E}Ψ(x) = 0, x = (x1,x2, . . . ,xA) (5)

for a system of A identical interacting fermions in bound state. One assumes that the
interaction V (rij , ζ) is a pairwise potential. It is calculated theoretically by mesons ex-
changes and practically by ˇtting the N −N phase shift with a suitable one- and two-bosons
exchange shape and then it is spinÄisospin (ζ) dependent. The kinetic energy operator
and the wave function are deˇned in polar coordinates (r, Ω) in the D = 3A − 3 di-
mensional space in the center-of-mass frame where the radial coordinate r is deˇned by

r2 = 2
A∑
1

(xi − x)2 = 2/A
∑

i,j>i

(xi − xj)2.

The state is deˇned either by a single (for closed shell) or by a sum of determinants
D[Lm](x) homogeneous in the particles coordinates xi and of degree minimum Lm. Since
the state is translationally invariant, it can be expressed in Jacobi coordinates. The product

V (x)DLm(x) =
∑

i,j>i,ε

V (rij , ε)P
(ε)
ij DLm(x), rij = xi − xj , (6)

where ε is for all two-body operators including exchange operators in the potential, generates
a wave function

Ψ(x) = D[Lm](Ω)
∑
i,j>i

F (rij , r), (7)

leading to a Schréodinger equation⎧⎨
⎩− d2

dr2
+

L(L + 1)
r2

− L2(Ω)
r2

+
∑

i,j>i,ε

V (rij , ε)P
(ε)
ij − E

⎫⎬
⎭D[Lm](Ω)

∑
k,�>k

F (rk�, r) = 0,

(8)
where L2(Ω) is a grand orbital operator [2], generalization of the �2(ω) orbital operator in
the 3-dimensional space, L = Lm + (D − 3)/2 and F (rij , r) a two-body amplitude for the
pair i, j.

Since D[Lm](x) can be written in Jacobi coordinates ξ, one has to choose a reference
two-body coordinate, for instance, ξ2 = x2 − x1 corresponding for easiness to the two ˇrst
rows of D[Lm].
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Any potential can be separated into two pieces:
1) A part invariant under rotation in the whole D-dimensional space, the Hypercentral

part of the potential, function of the radial coordinate r only.
2) A residual interaction, deformed in the D-space generating the correlations.
A harmonic oscillator is purely Hypercentral.
The effective Hypercentral potential given by a sum over all ε of

V
(ε)
[Lm](r) = 〈D[Lm](Ω) |V (x)|D[Lm](Ω)〉 =

=
A(A − 1)

2

〈
D[Lm](Ω)

∣∣∣V (rij , ε)P
(ε)
ij

∣∣∣D[Lm](Ω)
〉

(9)

is calculated in the same way for any pair i, j. It is computed by choosing this pair as
reference pair.

For each spinÄisospin operator P
(ε)
ij with P 0

ij = 1, one calculates a pseudo-weight function

W
(ε)
[Lm](z, ω) =

∫
D∗

[Lm](Ω)P (ε)
ij D[Lm](Ω) dΩ1 with

∫ ∣∣D[Lm](Ω)
∣∣2 dΩ = 1. (10)

One chooses i, j = 1, 2 where P
(ε)
1,2 (Ω) operates on the two ˇrst rows of D[Lm](x), while

Ω1 are for all angular coordinates but z = 2r2
12/r2 − 1 and ω which are for the reference

pair 1, 2. The calculation of the weight functions is made by substitution of the normalized
3-dimensional harmonic oscillator eigenfunctions (n, �, m) for r2n+�

i Y m
� (ωi) in D[Lm](x)/A!

The angular coordinate z = cos 2Φ for r12/r = cosΦ has been chosen because for bosons
W[0](z) = (1 − z)(D−5)/2

√
1 + z is associated with the Jacobi polynomials.

The weight function is obtained by the calculation of the Fourier transform over all pairs of

columns
〈
D[Lm](Ω)

∣∣∣eik(x2−x1)P
(ε)
1,2

∣∣∣D[Lm](Ω)
〉

= F (ε)(k) followed by an inverse Fourier

transform providing W (ε)(z, ω) [1, Subsec. 4.4].
The effective Hypercentral potential for the pair 1, 2 becomes a sum over all ε of〈

D[Lm](Ω)
∣∣∣V (r12, ε)P

(ε)
1,2

∣∣∣D[Lm](Ω)
〉

=
∫

W
(ε)
[Lm](z, ω)V (r12, ε) dz dω,

|r12| = r

√
1 + z

2
.

The residual potentials Ṽ (ε)(r1,2, r) = V (r1,2, ε)P
(ε)
1,2 − V

(ε)
[Lm](r) generate the correlations.

In order to calculate the contribution of the two-body correlations to the binding energy
and the wave function, one must ˇrst choose the reference pair among all Jacobi coordinates
in D[Lm](x) and then extract from Eq. (8) an equation for one pair only.

This equation is obtained by multiplying at left (8) by D∗
[Lm](Ω) and by integrating over

all coordinates but those of the reference pair, i.e., here z and ω.
It results from the structure of the kinetic energy operator, i.e., Eqs. (A.8) to (A.16) in [3],

that the integration procedure cancels the contribution of the kinetic energy of all pairs, but
the one of the reference pair.

It also appears from numerous numerical applications that the radial and orbital motions
described by the amplitude F (r12, r) can be written as the product F (r12, r) = u(r)P (z, ω, r),
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where u(r) is an eigenfunction of the radial Eq. (11), where �
2/m is taken into account:

{
�

2

m

(
− d2

dr2
+

L(L + 1)
r2

)
+

A(A − 1)
2

V[Lm](r) + U(r) − E

}
u(r) = 0, (11)

while the two-body amplitude where r is a parameter is a solution of

[
4
r2

�
2

m

{
∂

∂z
(1−z2)W[Lm](z, ω)

∂

∂z
+W[Lm](z, ω)

�2(ω)
2(1+z)

}
+W[Lm](z, ω)U(r)

]
P (z, ω, r)=

=
∑

ε

W
(ε)
[Lm](z, ω)Ṽ (ε)(r12, r)

⎛
⎝P (z, ω, r) + P0

∑
k,� �=1,2

P (zk�, ωk�, r)

⎞
⎠ , (12)

(�2(ω) + �(� + 1))Y �
m(ω) = 0

for −1 � z � 1 vanishing at z = 1, where Ṽ (ε) is the residual potential and P0 a projection
operator which projects functions in the space of rk� onto the space of the reference pair 1, 2.

The zk� and ωk� refer to the variable z and ω for the pair k, � �= 1, 2.
Another contribution can be introduced in the r.h.s. of (12), where the projection of the

residual potential P0
∑

k,� �=1,2

Ṽ (rk�, r) projected onto the pair (1, 2) is multiplied by P (z, ω, r),

leading to an equation symmetrical in the exchange of the amplitude and the potential like
the Schréodinger equation.

It is interesting to notice that by integrating Eq. (12),
∫

(12) dz dω for −1 � z � 1 the
kinetic energy term disappears and U(r) is given by the integral of the last term. It enables
one to check the quality of the amplitude obtained by solving Eq. (12), indeed the eigen
energy U(r) given by the integral where P (z, ω, r) is solution of (12) must be identical to
the one given by solving Eq. (12).

When the nucleus is spherical like for the closed shell or closed subshell nuclei the weight
function W[Lm](z) is also spherical, and when the amplitude is in s-state one obtains the
equation of the traditional Integro Differential Equation Approach (IDEA):

[
4�

2

mr2

{
1

W[Lm](z)
∂

∂z
(1 − z2)W[Lm](z)

∂

∂z

}
+ U(r)

]
P (z, r) =

= Ṽ

(
r

√
1 + z

2

)[
P (z, r) + P0P (z′, r)

]
, (13)

where the projection operator P0 applied to the amplitudes for all pairs k, � �= 1, 2 is an
integral:

P0P (z′, r) = P0
∑

k,� �=1,2

P (zk�, r) =

1∫
−1

f(z, z′)P (z′, r) dz, (14)



A Mathematical Structure for Nuclei 407

where the kernel called the projection function f(z, z′) is given by

f(z, z′) = W[Lm](z′)
∞∑

k=0

(f2
k − 1)P [Lm]

k (z)P [Lm]

k (z′),

(15)

f2
k − 1 = (A − 2)

2P
[Lm]
k (−1/2) + (A − 3)/2P

[Lm]
k (−1)

P
[Lm]
k (1)

,

where P
[Lm]
k (z) are the normalized polynomials associated with W[Lm](z) [4].

For three nucleons in s-state the sum of the series can be performed generating the Faddeev
equation for s-state projected potentials when V[0](r) = 0 [5]. To this respect this Faddeev
equation becomes a by-product of the IDEA when the Hypercentral potential is set equal
to zero.

Asymptotic and adiabatic properties of the IDEA are studied in [6].
The solution given by the IDEA (13) is similar to the one obtained with a Hyperspherical

harmonic expansion method but avoids the need to calculate a potential matrix. Equation (13)
can be computed with a simple algorithm used for solving a radial differential equation [7].
The convergence in terms of the number of polynomials in (15) is reached already with no
more than about ˇve polynomials up to 40Ca.

Out of closed shell or subshell the nuclei are not spherical. The structure of the weight
function, i.e., the two-body density in (12), is

W[Lm](z, ω) = N
∑

n,�′even

〈[Lm]
∣∣n, �′〉Y 0

�′ (ω)(1 + z)n+(�′+1/2)(1 − z)Lm+(D−5/2)−n−(�′/2),

(16)
where 〈[Lm]

∣∣n, �〉 are coefˇcients and N is a normalization constant ˇxed by

1∫
−1

W[Lm](z, ω) dz dω = 1.

The amplitude P (z, ω, r) can also be expanded in a similar way:

P (z, ω, r) =
∑
�even

(1 + z)�/2Y 0
� (ω)P �(z, r).

The product gives

W[Lm]P (z, ω, r) =
∑

n,�′,�,λ

〈[Lm] |n, �′〉〈�′, �; 0, 0 |λ, 0〉Y 0
λ (ω)×

× (1 + z)n+(�′+�+1)/2(1 − z)Lm+(D−5)/2−n−�′/2P �,

where 〈�′, �, 0, 0 |λ, 0〉 is a ClebshÄGordon coefˇcient.
Assuming a rotational invariance λ = 0 selects �′ = �:

(W[Lm]P (z, ω, r))0 =
∑

n,�even

〈[Lm] |n, �〉(1 + z)n+�+1/2(1 − z)Lm+(D−5)/2−n−�/2P �, (17)
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where P � are coefˇcients which specify the deformation. They must be chosen in order to
obtain the largest binding energy.

Then a set of orthogonal polynomials PK(z) associated with (17) can be generated to
deˇne an IDEA equation.

For more details and applications of the IDEA, refer to [3, 7].
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